
Devilry Documentation
Release 2.0.20-

The Devilry Team

August 08, 2018

Contents

1 Table of contents 1
1.1 Devilry user documentation . 1
1.2 Devilry sysadmin docs . 19
1.3 Devilry developer documentation . 36

2 More help 107
2.1 Forum, issue-tracker and contact information . 107

3 Indices and tables 109

Python Module Index 111

i

ii

CHAPTER 1

Table of contents

Devilry user documentation

Getting started

We recommend that you start with a quick look at Common concepts. This avoids confusion with a few special terms
that Devilry uses to allow it to be used in many different settings. When you have skimmed over the concepts, you can
continue with the other Topic guides below.

Common for all roles

Common concepts

Special terms and concepts

Devilry has some special terms and concepts. The most important (that cause most confusion) is:

• Term: A range of time. Typically a semester or a year.

• Examiner: Someone that provides feedback.

• Group: Students are always in a (project) group even when they work alone on an assignment.

More details about these and more terms and concepts follows below.

Node A Node is a place to organise top-level administrators (I.E.: administrators responsible for more than one
Subject (course)). Nodes are organised in a tree. This is very flexible, and can be used to emulate most administrative
hierarchies. A node is often a department, or some other organizational unit, but the exact use in your local Devilry
instance depends on how you choose to organize administrators in Devilry.

Subject (course) A subject is, as far as Devilry is concerned, a container of Terms. In a typical Devilry setup, a
Subject is the same as a Course, and each Term within the Subject is a semester or year.

Term (semester, year, ...) A term is a limited span of time (I.E: january to july 2011) that you give a name (I.E.:
Spring 2011). You register assignments on a term, and register students and examiners on each assignment.

1

Devilry Documentation, Release 2.0.20-

Group, Candidate and Student Students are not registered directly on an assignment. Instead a group is created,
and one or more students is added as Candidates on that group. This means that project assignments, where students
cooperate, is organized exactly like any other assignment. The only difference is the number of Candidates in each
group.

A Candidate can also have a candidate ID, which is used to identify the student on anonymous assignments like exams.

See also:

The Student role.

Deadline Deadlines are individual for each group. They are organized below a Group in the Devilry hierarchy. In
other words: Each Group has one or more deadlines.

Examiner Examiner is someone that writes feedback. Examiners are often one of these:

• A teacher that corrects their own students. They are usually Term or Subject administrator in addition to Exam-
iner.

• A teaching assistant.

• Someone giving anonymous feedback on an exam.

A user becomes examiner when they are assigned as examiner for a group (See Group, Candidate and Student) by an
administrator.

See also:

The Examiner role.

Special terms in context — a typical Devilry hierarchy The tree below is an example of a typical Devilry hierarchy
for a university named Duckburgh University with the special terms in brackets.

• Duckburgh University [Node]

– Department of Physics [Node]

* PHYS 101 — Introduction to physics [Subject (course)]

· Spring 2011 [Term (semester, year, ...)]

Assignment one

Peter Pan and Wendy [Group, Candidate and Student]

Deadline feb. 27 2012 19:30 [Deadline]

Delivery 1

Captain Hook [Group, Candidate and Student]

Deadline mar. 12 2012 11:45 [Deadline]

Delivery 3

Deadline feb. 28 2012 12:30 [Deadline]

Delivery 2

Delivery 1

John Doe [Group, Candidate and Student]

Deadline feb. 25 2012 23:35 [Deadline]

2 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Delivery 1

· Spring 2012 [Term (semester, year, ...)]

· Spring 2013 [Term (semester, year, ...)]

* PHYS 302 — Advanced physics [Subject (course)]

* ...

– Department of Informatics [Node]

* INF 101 — Introduction to programming [Subject (course)]

* INF 102 — Objectoriented programming [Subject (course)]

* ...

– ...

Email sending in Devilry

Email sending is highly configurable in Devilry. This guide deals with the default configuration.

When does Devilry send email?

Whenever a student makes a delivery, and whenever they get a new feedback.

How to test email sending (for system admins)

Go to the frontpage, select the Superuser role, select Users, select a user and click Send a test-email to USERNAME
in the upper right corner.

Student

The Student role

The student interface should be intuitive to use. Please post an issue with our Issue tracker if that is not the case.

How to create project groups (collaborate on an assignment)

How it works

Project groups are created on a per assignment basis. Features:

• Any member of the group can make deliveries on behalf of the group.

• Any feedback given to the project group is for all group members. If you are supposed to get individual feedback,
you should not be in a project group.

• When you join a group, you get any deliveries and feedback made by the group before joining, and they get any
deliveries and feedback you may have had when joining the group.

• When you leave a group, you do not loose any deliveries and feedback. You even keep deliveries and feedback
made before you joined the group.

1.1. Devilry user documentation 3

https://github.com/devilry/devilry-django/issues

Devilry Documentation, Release 2.0.20-

Invite other students to join your group

If your course administrator have enabled collaboration, you can invite other students to join your group as follows:

1. Log in to Devilry.

2. Select the Student role on the frontpage.

3. Select the assignment.

4. Select Project group in the list on the left.

5. It will say Invite someone to join your group? at the top of the page. Under you can select the student you want
to invite to your group, and send an invite. Other students will get their invite via email, and they can accept or
decline the invite. You can delete an unanswered invite. If any, your group members will be in the list Project
group members at the bottom of the page.

Warning: All students you invite to your group will given all current deliveries and feedback, even deliveries and
feedbacks made before they joined the group. If they leave the group, they will keep all deliveries and feedback
you have received on the assignment, even feedback and deliveries made before they joined the group.

Note: Refer your course administrator to How to administer project groups (students that collaborate) if you think
they should enable collaboration.

Leave a group / kick a member

You need to ask a course administrator if you want to leave a group or kick a group member. Leaving a group or
kicking a member is perfectly safe. Any member leaving a group is simply moved into a complete copy of the group
including all deliveries and feedback. The only difference is that the original group gets one less member, and the new
group will only have one member.

Examiner/Corrector

The Examiner role

Note: Examiner is someone that writes feedback. Examiners are often one of these:

• Someone responsible for correcting some or all students in a subject/course.

• A teacher that corrects their own students. They are usually Period or Subject administrator in addition to
Examiner.

• Someone giving anonymous feedback on an exam.

Getting started

Getting started guide for examiners
Note: To avoid confusion when reading this guide, please read Common concepts, at least the Group, Candidate and
Student section.

Note: This guide is under construction. Please contact devilry-support@ifi.uio.no if you have questions of any kind
related to Devilry.

4 Chapter 1. Table of contents

mailto:devilry-support@ifi.uio.no

Devilry Documentation, Release 2.0.20-

Choose the examiner role After successful login you need to choose Examiner from the list of available roles.

Select an assignment On the examiner dashboard, assignments where you are examiners are listed. To start cor-
recting, you must choose the spesific assignment in which you want to work with. The list are ordered by the time the
assignments where published in descending order. This ensure that your latest assignment are listed on top.

1.1. Devilry user documentation 5

Devilry Documentation, Release 2.0.20-

Select the group to correct After the assignment is choosen you are redirected to a view that list all groups on the
assignment.

The list may be filtered to show a more fine grained selection:

Waiting for feedback Shows the assignment groups that have at least one valid delivery and are waiting for feedback
to be provided by the examiner.

Waiting for deliveries Shows the assignment groups that have not provided a valid delivery yet.

Corrected Shows the assignment groups that are corrected. Be aware that Corrected will list both failed and passed
groups as long as they are corrected.

All Shows every assignment group on the assignment where yourself are the assigned examiner. This is the default
filter upon entering the view.

To start correcting you would normally filter with the Waiting for feedback option. The Write feedback button on
the group item in the list will take you directly to the latest delivery provided by the group. see Add feedback to the
delivery for further details.

If you need access to older deliveries provided by the group you must click on the group name header in the list item
which redirect you a detailed view for that assignment. More information on this view in Correct an earlier delivery

Add feedback to the delivery Upon entering the delivery you will need to click the Provide feedback button to start
giving feedback.

Provide Feedback This view may vary depending on the grading system configured for the assignment. The picture
show a simple points system with a form to provide the number points achieved.

Every grading system features the ability to provide a feedback text in addition to the grade information. Click inside
the textbox and a WYSIWYG Markdown editor will be shown. Just type in the feedback and push the Publish button
to publish the feedback without examine a preview. If you lack experience with Markdown you would probably want
to click the Preview button to be able to secure that the feedback appear as supposed.

Feedback drafts and history You may save you work for later by clicking the Save Draft button

6 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Correct the next delivery When there is multiple groups Waiting for feedback you can loop through each group by
clicking the arrow button in the upper right corner of the view.

Correct an earlier delivery When choosing the spesific group every delivery attempts will be listed categorised by
the their respective deadlines. This makes it possible to correct a delivery that is not the latest one.

How to examine in bulk or correct non electronic deliveries
Note: To avoid total confusion when reading this guide, please read Common concepts, at least the Group, Candidate
and Student-section.

Introduction This is a guide for examiners who want to give the same feedback to multiple groups at once and for
examiners giving feedback to assignments where Devilry is only used to register results(not for deliveries).

Choose the examiner role It should be one of the available roles on your frontpage.

Select an assignment On the examiner dashboard, assignments where you are examiners are listed ordered by pub-
lishing time in descending order. Choose an assignment from this list to get start giving feedback on that assignment.

1.1. Devilry user documentation 7

Devilry Documentation, Release 2.0.20-

Group overview When you enter the examiner interfance, you will see an overview of all groups on that assignment.
Choose one or more groups and click Give feedback to selected. A window containing the grade editor is shown. Click
the Help-button in the lower left corner of the grade editor for more help.

Note: You can right-click anywhere in the group overview for quick access to everything in the toolbar.

Other examiner guides

How to correct several groups at once
Note: To avoid confusion when reading this guide, please read Common concepts, at least the Group, Candidate and
Student-section.

Introduction This guide show you how to edit feedback for a selection of groups. To get to the view described here
you must first choose the examiner role in the Devilry frontpage and then choose an assignment.

8 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Editing of multiple groups is easy and straightforward. Activate the checkboxes next to the group of interest to add it
to your selection. If you want to choose all groups within the active filter you may click Select All button to speed up
the process. When you have created your selection click the Write feedback button to start providing feedback.

Provide feedback The groups that you selected are listed after the Edit feedback for: text, please make sure
that it is complete and correct before you take further actions. Provide your feedback. Click Preview button to get a
glimpse on how your feedback will look when completely rendered. Be aware that Preview will save your feedback
draft on each group. You will be able to come back and edit further in the next step.

If you want to publish your work right away just click Publish.

Manage deadlines — for Examiners

Add a deadline When an assignment is created, an initial deadline is set. You can not change this deadline, however
you can extend the deadline by creating a new deadline. You usually create deadlines for the following reasons:

A student gets a failing grade If you want to give the student a change to get a new attempt Devilry will ask you
(when you publish a failing feedback) if you wish to give the group a new deadline.

Move a deadline Currently, examiners can not move deadlines. This is coming along with an update of the examiner
UI. For now, you have to ask an administrator if you need to move a deadline.

How to add feedback to a student without deliveries
Note: This guide is a supplement to Getting started guide for examiners.

Choose the examiner role It should be one of the available roles on your frontpage.

Select an assignment On the examiner dashboard, assignments where you are examiners are listed ordered by pub-
lishing time in descending order. Choose an assignment from this list to get start giving feedback on that assignment.

Select a group without any deliveries Select a group that waiting for feedback, but does not have any deliveries, as
illustrated in the figure below:

1.1. Devilry user documentation 9

Devilry Documentation, Release 2.0.20-

Click the “add non-electronic delivery” button If the group: - Has no deliveries. - Is waiting for feedback (their
last deadline has expired).

You will see a orange warning-box like the one in this illustration:

Click the add non-electronic delivery button, and follow the instructions on the next page.

Devilry flavoured Markdown When you write feedback to your students, you use the Markdown text formatting
language.

With Markdown, you to write using an easy-to-read, easy-to-write plain text format, and let someone else (Devilry)
worry about how the results will look. This makes it possible to write feedback text that Devilry can optimize for
anything from smartphones to large desktop displays.

Basics

Paragraphs Paragraphs are just one or more lines of consecutive text followed by one or more blank lines:

Maecenas faucibus mollis interdum. Vestibulum id ligula porta felis euismod
semper. Vestibulum id ligula porta felis euismod semper. Aenean lacinia
bibendum nulla sed consectetur.

Donec id elit non mi porta gravida at eget metus. Vestibulum id ligula
porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque
nisl consectetur et.

10 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Headings

Largest heading
Second largest heading
...
Very small heading

Text styles

Italic text
Bold text

Links

Check out [http://devilry.org](The devilry website).

Lists Unordered lists (bullet lists):

* This

* is

* a

* test

Ordered lists (numbered lists):

1. Item one
2. Item two
3. Item three

Blockquotes

As stated on the first page of the 101 guide:

> You have to learn to walk before you can learn how to run

Advanced

Escape Markdown characters If you want to use a special Markdown character in your document (such as dis-
playing literal asterisks), you can escape the character with a backslash. Markdown will ignore the character directly
after a backslash. Example:

This is how the _ (underscore) and * asterisks characters look.

LaTeX Math Devilry Markdown supports LaTeX math through the MathJAX library/renderer. Examples:

1.1. Devilry user documentation 11

Devilry Documentation, Release 2.0.20-

A simple example:
$mathblock$
^3/_7
$/mathblock$

The Lorenz Equations:
$mathblock$
\begin{aligned}
\dot{x} & = \sigma(y-x) \\\\
\dot{y} & = \rho x - y - xz \\\\
\dot{z} & = -\beta z + xy
\end{aligned}
$/mathblock$

You have to escape special Markdown characters such as \, which is why we have \\\\ at the end of our lines in the
example above instead of just \\.

Code blocks You can easily show syntax highlighted code blocks:

Java code:
‘‘‘ java
class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello world");

}
}
‘‘‘

Python code:
‘‘‘ python
if __name__ == "__main__":

print "Hello world"
‘‘‘

C code:
‘‘‘ c
#include<stdio.h>
int main() {

printf("Hello World");
return 0;

}
‘‘‘

C++ code:
‘‘‘ c++
#include <iostream>
int main() {

std::cout << "Hello World!";
return 0;

}
‘‘‘

HTML example:
‘‘‘ html
<html>

<body>
<h1>Hello world</h1>

12 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

</body>
</html>
‘‘‘

CSS example:
‘‘‘ css
body {

background-color: pink;
color: green;
font-size: 80px;

}
‘‘‘

Any code:
‘‘‘
for x in 1 through 3

show x
‘‘‘

Devilry supports all languages supported by Pygments.

Frequently asked questions

Examiner UI FAQ

How can I set a new deadline? When the deadline is up you will be asked if you want to provide a new deadline for
students to deliver.

What can an examiner do?

Examiners can basically do anything non-destructive with groups (see Group, Candidate and Student) that they have
been assigned to:

• View all feedback for the groups.

• Add new deadlines to their groups.

• Give feedback.

• Change feedback. Each change to the published feedback is logged, and the students can view all published
feedback.

Examiners can not:

• Delete groups.

• Add new groups.

• Add or remove students to groups.

• Move deadlines. This is a missing feature, which will be implemented in a future release. It will be safe becuase
students will remain protected because of logging of all changes. Moving deadlines is already implemented for
administrators.

• Remove deadlines from groups. We will probably allow examiners to remove deadlines without deliveries when
we start allowing them to move deadlines.

1.1. Devilry user documentation 13

http://pygments.org/languages/

Devilry Documentation, Release 2.0.20-

Subject/Course administrator

Note: For users managing one or more courses.

Introduction to the Subjectadmin role

Note: Please read, or at least take a quick look at, the Common concepts before reading this guide.

Who this guide is for

A subject is, as explained in the common concepts guide, typically a course. This means that this guide is for admin-
istrators managing a course or a term (semester) within a course. If you have orange background color in your header,
you are using the user interface for the Subjectadmin role.

The responibilities of a Subjectadmin

A Subjectadmin manage one or more Subject (course), and/or Term (semester, year, ...). They set up assignments,
organize students into Groups, and assignment Examiners to give feedback to students.

Commmon tasks

Finding the Subjectadmin frontpage The Subjectadmin frontpage is the page that you navigate to when you select
the Subject administrator role (may be something like Course administrator in your local dialect), from the Devilry
frontpage.

Create an assignment We provide an interractive guide to help you create assignments. Simply go to the Subjec-
tadmin frontpage (see Finding the Subjectadmin frontpage), and select the guide on the right hand side.

Get an overview over all your students Select an active Term (semester, year, ...) from the Subjectadmin frontpage
(see Finding the Subjectadmin frontpage), or an old/expired Term (semester, year, ...) via the link further down on the
frontpage.

Under the Edit and view related information heading, you will find links to your Students, and a link to an Overview of
all results. You can export (download) the overview as MS Excel, CSV, and a couple of other formats. The export-links
is in the toolbar right below the page heading.

Manage deadlines — for Subjectadmins

Subject administrators can create, view, move and edit deadlines using the Deadlines link on the main page for an
assignment.

Overview of the deadline view

The image below is a typical deadline overview. Each of the red-marked areas is explained below the image.

14 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Add deadline (hilighted with a red circle) Click the Add deadline button to a add deadline to one or more groups.
You can select individual groups, and Devilry has shortcuts for a couple of common choices.

Expand/collapse deadline (hilighted by a red arrow) Deadlines start out collapsed when you enter a view. Click
the deadline to expand or collapse it.

Move/edit deadline (hilighted by a red rectangle) To move or edit (the about-text for) a deadline, expand the
deadline, and select the edit-button.

You can change the deadline for only some of the groups within the deadline, effectively splitting the deadline in two.
This is explained on the right-hand side of the list of groups that appear when you choose that option.

Delete deadline (hilighted by a red rectangle) You can delete a deadline, but only superusers can delete deadlines
where groups have made deliveries.

Hard VS soft deadlines

Soft or hard deadlines is configured on the left hand side in the assignment overview under the Deadline handling
heading. Use the More info button to get detailed information about soft and hard deadlines.

What about examiners?

Examiners can add deadlines. It is a natural part of their workflow. Whenever they fail a student, they are asked to do
one of the following:

• Leave the student with a failing grade.

1.1. Devilry user documentation 15

Devilry Documentation, Release 2.0.20-

• Give them another chance — create a new deadline.

How to administer project groups (students that collaborate)

Concepts and features

Devilry is designed with cooperative deliveries in mind.

• Students are always in a group even when they work alone.

• Course admins can safely create and split up project groups at any time.

• You can enable students to create project groups on their own.

• Groups are created and managed per assignment. This means that changing a group on one assignment does not
affect that group on another assignment. You can copy groups from another assignment when you create a new
assignment.

• Students can be organized in groups even after they have made deliveries and been given feedback. They their
respective groups are simply merged into a single group with all deliveries and feedback. The last feedback (if
any) is made the active feedback.

How to enable students to create project groups on their own

If you want to allow students to form project groups on their own, you have to enable this option on the assignment:

1. Go to the overview page for an assignment where you have administrator rights.

2. Click any of the edit buttons in the sidebar to your left, except the edit button for Grading system.

3. Edit the options in the Allow students to form project groups section.

Note: To see how students form project groups on their own, see How to create project groups (collaborate on an
assignment). You should refer your students to that guide when you ask them to form their own groups. Devilry does
not notify students when you enable this feature.

Note: This is not as intuitive as it should be. It will be made more intuitive in the future.

How to manually create a project group

1. Open the students overview on the relevant assignment.

2. Select two or more groups/students.

3. Select Create project group.

Exactly what this means is explained when you click Create project group, and you have to confirm before the group
is created. In short,

How to remove a student from a group

Students can not leave groups on their own (yet). So an admin has to manage that:

1. Open the students overview on the relevant assignment.

16 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

2. Select the group.

3. Click the red minus button on the right hand side of the student you wish to remove from the group.

This will do the following:

• Create a copy of the group with all deliveries and feedback, even deliveries made by other students before the
student you are removing joined the group.

• Add the student you are removing to the copy of the original group.

Examiners — How to set examiners, and how to create feedback

How to give feedback to students when you are Subjectadmin

Starting with Devilry 1.2.1 it is no longer possible to give feedback using the Subjectadmin role. You have to make
yourself examiner.

How to make yourself examiner

The easiest way of making yourself examiner is to make yourself examiner when creating a new assignment. If you
are one of many examiners, you will have to make sure you are tagged appropriately. The Create new assignment
wizard helps you with this when you get to that step.

The other way of making yourself examiner is to do it manually after the assignment has been created. Select an
assignment, and select the Students-link. The see the help-column for more help.

How to make others examiner

This is basically the same as the previous section. Just choose other users than yourself.

What do examiners have permission to do

See What can an examiner do?.

Note: The reason why it is no longer possible to provide feedback as Subjectadmin is that we have need to be able
to optimize the workflows for examiners and subject admins independently. Mixing the roles leads to confusion in all
but the most simple cases, and it increases the development time required for each change to any of the user-interfaces
significantly.

Choose students that qualify for final exams

Quickstart

We have an interractive guide for this on your right-hand side on the Subjectadmin frontpage (see Finding the Subjec-
tadmin frontpage). Select the guide, and follow its instructions.

1.1. Devilry user documentation 17

Devilry Documentation, Release 2.0.20-

How the qualified for final exams system works

You select the students that qualify for final exams using one of the provided plugins. Nodeadmins, or automatic
exporters, read these lists to determine who can participate in the final exams.

Students can see if they are qualified for exams or not, but they can not se why they are qualified (they can not see what
plugin was used, and with what settings). You should use the course website, or other approprite channels to inform
your students about the requirements for final exams.

Changing or retracting

You can retract or change a saved qualified for final exams-status.

Warning: Nodeadmins are not notified when you retract or change a status. We are working on a system that
handles updates/retracting, but that did not make it into the first release of the Qualifies for final exams app.
Please notify the people coordinating final exams for your department/organizational unit if you change a status.

To change a status, simply use the button at the bottom of the box at the top of the page showing a status.

No plugin fits my needs!

Contact the Devilry developers and we will try to help you.

Node/Department admin

Note: For users managing a Node containing multiple courses.

Introduction to the Nodeadmin role

Note: Please read, or at least take a quick look at, the Common concepts before reading this guide.

The responibilities of a Nodeadmin

A Nodeadmin manage one or more Node. They typically have responsibility for an entire department or organizational
unit, where a node represents a department/organizational unit.

Finding the Nodeadmin frontpage

The Nodeadmin frontpage is the page that you navigate to when you select the Node administrator role (may be
something like Department administrator in your local dialect), from the Devilry frontpage. The button is orange.

Find students, subjects, etc

We recommend that you use search to find items in Devilry a a Nodeadmin. You can find the search-panel in the
header on the left hand side of your name in the upper right corner of any page.

18 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

View/browse students that qualify for final exams

To view/browse students that qualify for final exams, grouped by their subject/course, you need to:

1. Finding the Nodeadmin frontpage.

2. Navigate to a Node containing subjects/courses.

3. Select the Qualifed for final exams-link in the Tools section.

Please read

The guide for subject/course admins, to know how they interract with the Qualified for final exams system.

Devilry sysadmin docs

Getting started

Install required system packages

1. Python 2.7.X. Check your current version by running python --version.

2. PIP

3. VirtualEnv

4. PostgreSQL server. Alternatively, you can test out Devilry with SQLite, but you will need PostgreSQL for
production.

Create a system user for Devilry

You should run Devilry as a non-privledged user. We suggest you name the user something like devilryrunner.
Run all commands in this documentation as this user unless stated otherwise.

Make a directory for your Devilry deploy

You need a directory for your Devilry settings and other Devilry-related files. We suggest you use the
~/devilrydeploy/ directory (in the HOME folder of the devilryrunner-user):

$ mkdir ~/devilrydeploy

The rest of the guide will assume you use the ~/devilrydeploy-directory

Make a requirements file for Python packages

To run Devilry in production, you need the Devilry library, and a couple of extra Python packages and perhaps you
will want to install some third party devilry addons. We could just install these, but that would be messy to maintain.
Instead, we use a PIP requirements-file. Create ~/devilrydeploy/requirements.txt with the following
contents:

1.2. Devilry sysadmin docs 19

https://pip.pypa.io
https://virtualenv.pypa.io

Devilry Documentation, Release 2.0.20-

PostgreSQL python bindings
psycopg2

Elastic search python bindings
elasticsearch

Supervisord process manager
supervisor

The devilry library/djangoproject
- See http://devilry.org for the latest devilry version
devilry==VERSION

Where VERSION should be set to the latest version of Devilry.

Install from the requirements file

$ cd ~/devilrydeploy
$ virtualenv venv
$ venv/bin/pip install -r requirements.txt

Create a Django management script

Copy this script into ~/devilrydeploy/manage.py:

import os
import sys

if __name__ == "__main__":
os.environ["DJANGO_SETTINGS_MODULE"] = "devilry_settings"
from django.core.management import execute_from_command_line
execute_from_command_line(sys.argv)

Configure

Devilry is configured through a python file. We will start by configuring the essential parts to get a working Devilry
server, and then move on to guides for the more complex parts like search and authentication in separate chapters.

Start by copying the following into ~/devilrydeploy/devilry_settings.py:

from devilry.project.production.settings import *
import dj_database_url

Make this 50 chars and RANDOM - do not share it with anyone
SECRET_KEY = ’XXX’

Database config
DATABASE_URL = ’sqlite:///devilrydb.sqlite’
DATABASES = {’default’: dj_database_url.config(default=DATABASE_URL)}

Set this to False to turn of debug mode in production
DEBUG = True
TEMPLATE_DEBUG = DEBUG

20 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

#: Default from email - students receive emails from this address when they make deliveries
DEVILRY_EMAIL_DEFAULT_FROM = ’devilry-support@example.com’

#: The URL that is used to link back to devilry from emails
DEVILRY_SCHEME_AND_DOMAIN = ’https://devilry.example.com’

#: Where should Devilry store files delivered by students.
#: This directory should be backed up.
DEVILRY_FSHIERDELIVERYSTORE_ROOT = ’/path/to/directory/for/deliveryfiles/’

#: The directory where user uploaded files such as attachments to feedback is uploaded.
#: This directory should be backed up.
MEDIA_ROOT = ’/path/to/directory/for/uploadedfiles/’

#: Url where users are directed when they do not have the permissions they believe they should have.
DEVILRY_LACKING_PERMISSIONS_URL = None

#: Url where users are directed when they want to know what to do if their personal info in Devilry is wrong.
DEVILRY_WRONG_USERINFO_URL = None

#: Url where users can go to get documentation for Devilry that your organization provides.
#: If you leave this blank, the only help link will be the official Devilry documentation.
DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_URL = None

#: Text for the DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_URL link.
#: Leave this blank to use the default text
DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_TEXT = None

#: Deadline handling method:
#:
#: 0: Soft deadlines
#: 1: Hard deadlines
DEFAULT_DEADLINE_HANDLING_METHOD = 0

#: Configure an email backend
EMAIL_BACKEND = ’djcelery_email.backends.CeleryEmailBackend’
CELERY_EMAIL_BACKEND = ’django.core.mail.backends.smtp.EmailBackend’
INSTALLED_APPS += [’djcelery_email’]
EMAIL_HOST_USER = ’’
EMAIL_HOST_PASSWORD = ’’
EMAIL_PORT = 25
EMAIL_USE_TLS = False

If you have a devilry_prod_settings.py file from an older version of Devilry, you should be able to copy
over most of these settings.

Make sure it works

Just to make sure everything works, run:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py syncdb --noinput
$ venv/bin/python manage.py migrate --noinput

This should create a file named ~/devilrydeploy/devilrydb.sqlite. You can remove that file now - it was
just for testing.

1.2. Devilry sysadmin docs 21

Devilry Documentation, Release 2.0.20-

Configure a SECRET_KEY

Configure the SECRET_KEY (used for cryptographic signing) by editing the SECRET_KEY setting in your
devilry_settings.py script. Make it a 50 characters long random string.

Configure the database

Configure a Postgres database by editing the DATABASE_URL setting in your devilry_settings.py script. The
format is:

DATABASE_URL = "postgres://USER:PASSWORD@HOST:PORT/NAME"

Note: If you are just testing out Devilry, you can keep SQLite as the database.

Configure where to store files

Adjust the DEVILRY_FSHIERDELIVERYSTORE_ROOT setting to a directory where you want delivered files to be
stored, and the MEDIA_ROOT setting to a directory where you want to place all other uploaded files, such as files
uploaded as attachments when examiners provide feedback.

Configure various external pages

Make sure you create a website that you can link to for the DEVILRY_LACKING_PERMISSIONS_URL
and DEVILRY_WRONG_USERINFO_URL pages. You may also want to configure a
DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_URL, but that is not required.

Configure Email sending

You will probably have to adjust the EMAIL_* settings. The use of
djcelery_email.backends.CeleryEmailBackend means that all email is sent via a background
queue instead of letting email sending become a potential bottleneck. The other email settings are documented in the
Django settings.

Disable debug mode

Before running Devilry in production, you must set DEBUG=False in devilry_settings.py.

Warning: If you do not disable DEBUG mode in production, you database credentials and SECRET_KEY will
be shown to any visitor when they encounter an error.

Create or migrate a database

No matter if the current the database contains a database from a previous Devilry version, or if you are starting from
an empty database, you need to run:

22 Chapter 1. Table of contents

https://docs.djangoproject.com/en/1.6/topics/settings/

Devilry Documentation, Release 2.0.20-

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py syncdb --noinput
$ venv/bin/python manage.py migrate --noinput

This will create any missing database tables, and migrate any unmigrated database changes.

Collect static files

Run the following command to collect all static files (CSS, javascript, ...) for Devilry:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py collectstatic

The files are written to the staticfiles sub-directory (~/devilrydeploy/staticfiles).

Run the gunicorn server

Run:

$ cd ~/devilrydeploy/
$ DJANGO_SETTINGS_MODULE=devilry_settings venv/bin/gunicorn devilry.project.production.wsgi -b 0.0.0.0:8000 --workers=3 --preload

You can adjust the number of worker threads in the --workers argument, and the port number in the -b argument.

Note: This is not how you should run this in production. Below, you will learn how to setup SSL via a webserver
proxy, and Supervisord for process management.

If you do not have an existing database — Add some data

If you do not have a Devilry database from a previous version of Devilry, you will want to add some data.

First, create a superuser:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py createsuperuser

Next:

• Go to http://localhost:8000/

• Login with your newly created superuser.

• Select the Superuser role.

• Add a Node. The toplevel node is typically the name of your school/university.

• Add a Course within the created node. Make sure you make yourself admin on the course.

• Go back to http://localhost:8000/. You should now have a new Course manager role available on the frontpage.

If you have an existing database

If you already have a working Devilry database, you will most likely have to configure and authentication backend
before you can do any more testing (explained below).

1.2. Devilry sysadmin docs 23

http://localhost:8000/
http://localhost:8000/

Devilry Documentation, Release 2.0.20-

Stop the gunicorn server

When you are done testing, stop the gunicorn server (with ctrl-c), and move on to setting up the more complex
parts of the system.

Whats next?

You now have a working Devilry server, but you still need to:

• Setup a Devilry authentication backend.

• Install and configure the ElasticSearch search server.

• Setup the Celery background task server.

• Setup Supervisord for process management, log handling and log rotation.

• Setup Nginx, Apache or some other web proxy server with SSL.

Install and configure the ElasticSearch search server

Install ElasticSearch

See http://www.elasticsearch.org/.

Configure ElasticSearch as the Devilry search backend

Add the following to ~/devilrydeploy/devilry_settings.py:

HAYSTACK_CONNECTIONS = {
’default’: {

’ENGINE’: ’haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine’,
’URL’: ’http://127.0.0.1:9200/’,
’INDEX_NAME’: ’devilry’,

},
}

Adjust the URL if you are running ElasticSearch on a separate server or another port.

Build the search index

To index the data currently in the database, run:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py rebuild_index --noinput

Setup a Devilry authentication backend

Choices

Devilry can work with any Django-compatible authentication backend.

24 Chapter 1. Table of contents

http://www.elasticsearch.org/

Devilry Documentation, Release 2.0.20-

The default authentication backend

If you do not have a user database that you wish to use for Devilry, you can use the default Django authentication
backend, and add users to Devilry manually.

Authenticate using LDAP

Authenticating via LDAP requires the django-auth-ldap Python module and some small adjustments to your
settings.

Install the django-auth-ldap module

Add a new line containing django-auth-ldap in your ~/devilrydeploy/requirements.txt, then run:

$ cd ~/devilrydeploy
$ venv/bin/pip install -r requirements.txt

to install the new module.

Add the LDAP backend to your settings

Add the following to your ~/devilrydeploy/devilry_settings.py:

AUTHENTICATION_BACKENDS = (
’django_auth_ldap.backend.LDAPBackend’,

)

You will also have to configure how to authenticate via LDAP. That is explained in the django-auth-ldap docs:
https://pythonhosted.org/django-auth-ldap/authentication.html

Autoset email

If your authentication backend does not provide an email address for your users, you will most likely want to take a
look at: Autoset email from the authentication backend username.

Setup the Celery background task server

If you want to scale Devilry to more than a couple of hundred users, you really have to configure the Celery background
task server. Celery is installed by default, but you need to configure a task broker. We recommend Redis.

Install Redis

See https://redis.io/.

Configure Redis

Uncomment the requirepass setting in redis.conf to set a password. Remember to run Redis with this config:

1.2. Devilry sysadmin docs 25

https://pythonhosted.org/django-auth-ldap/authentication.html
https://redis.io/

Devilry Documentation, Release 2.0.20-

$ redis-server /path/to/redis.conf

You can tweak other configuration parameters in this file, such as port and other things, so check it out.

Add Redis and Celery settings to Devilry

Add the following to ~/devilrydeploy/devilry_settings.py (change secret to match the password in
the redis.conf file) and set the correct config parameters in REDIS_CONFIG:

REDIS_CONFIG = {
’port’: 6379,
’hostname’: ’localhost’,
’password’: ’secret’,
’db_number’: 0

}

BROKER_URL = ’redis://:{password}@{hostname}:{port}/{db_number}’.format(
password=’secret’,
hostname=’localhost’,
port=6379,
db_number=0

)

CELERY_RESULT_BACKEND = ’redis://:{password}@{hostname}:{port}/{db_number}’.format(
password=’secret’,
hostname=’localhost’,
port=6379,
db_number=0

)

Run Celery

To run Celery, use:

$ cd ~/devilrydeploy/
$ DJANGO_SETTINGS_MODULE=devilry_settings venv/bin/celery -A devilry.project.common worker -l debug

If this starts without any errors, Celery should be working. You can stop the server using ctrl-c. For all other cases
than debugging and testing, we will be running the Celery server via Supervisord (see Setup Supervisord for process
management, log handling and log rotation).

Setup Supervisord for process management, log handling and log rotation

Note: This assumes the full path to your ~/devilrydeploy-directory is
/home/devilryrunner/devilrydeploy — adjust accordingly.

Create a Supervisord configuration file

Create a file named ~/devilrydeploy/supervisord.conf and add the following:

26 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

[supervisord]
childlogdir = /home/devilryrunner/devilrydeploy/log
logfile = /home/devilryrunner/devilrydeploy/log/supervisord.log
logfile_maxbytes = 50MB
logfile_backups = 30
loglevel = info
pidfile = /home/devilryrunner/devilrydeploy/var/supervisord.pid
umask = 022
nodaemon = false
nocleanup = false

[inet_http_server]
port = 9001
username = devilryadmin
password = secret

[supervisorctl]
serverurl = http://localhost:9001
username = devilryadmin
password = secret

[rpcinterface:supervisor]
supervisor.rpcinterface_factory=supervisor.rpcinterface:make_main_rpcinterface

[program:gunicorn]
command = /home/devilryrunner/devilrydeploy/venv/bin/gunicorn devilry.project.production.wsgi -b 127.0.0.1:8002 -w 12 --timeout 300
environment = DJANGO_SETTINGS_MODULE=devilry_settings
process_name = gunicorn
directory = /home/devilryrunner/devilrydeploy
redirect_stderr = true
stdout_logfile = /home/devilryrunner/devilrydeploy/log/gunicorn.log
stdout_logfile_maxbytes = 150MB
stdout_logfile_backups = 15

[program:celery]
command = /home/devilryrunner/devilrydeploy/venv/bin/celery -A devilry.project.common worker -l info
environment = DJANGO_SETTINGS_MODULE=devilry_settings
process_name = celery
directory = /home/devilryrunner/devilrydeploy
redirect_stderr = true
stdout_logfile = /home/devilryrunner/devilrydeploy/log/celery.log
stdout_logfile_maxbytes = 150MB
stdout_logfile_backups = 15

Password and security

Make sure you set some other password than secret in the [inet_http_server] and [supervisorctl]
sections, and make sure ~/devilrydeploy/supervisord.conf is only accessible to the devilryrunner-
user.

Create the var/ and log/ directories

The supervisord.conf file refers to the ~/devilrydeploy/var/ and ~/devilrydeploy/log/ directories.
These must be created:

1.2. Devilry sysadmin docs 27

Devilry Documentation, Release 2.0.20-

$ cd ~/devilrydeploy
$ mkdir var/ log/

Make sure all services work as excpected

To run supervisord in the foreground (for testing), run:

$ cd ~/devilrydeploy
$ venv/bin/supervisord -n -c supervisord.conf

You should now be able to open http://localhost:8002 in a browser and use Devilry. Use ctrl-c to kill supervisord
and all the services it is running.

Run Supervisord for production

To run supervisord in the background with a PID, run:

$ cd ~/devilrydeploy
$ venv/bin/supervisord -c supervisord.conf

Warning: Do NOT run supervisord as root. Run it as the devilryrunner user.

Init script

The following init script works well. You need to adjust the DAEMON-variable:

#! /bin/sh
BEGIN INIT INFO
Provides: supervisord
Required-Start: $remote_fs
Required-Stop: $remote_fs
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Example initscript
Description: This file should be used to construct scripts to be
placed in /etc/init.d.
END INIT INFO

Author: Dan MacKinlay <danielm@phm.gov.au>
Based on instructions by Bertrand Mathieu
http://zebert.blogspot.com/2009/05/installing-django-solr-varnish-and.html
See: https://gist.github.com/176149

Do NOT "set -e"

PATH should only include /usr/* if it runs after the mountnfs.sh script
PATH=/sbin:/usr/sbin:/bin:/usr/bin
DESC="Description of the service"
NAME=supervisord
DAEMON=/usr/local/bin/supervisord
DAEMON_ARGS=""
PIDFILE=/var/run/$NAME.pid

28 Chapter 1. Table of contents

http://localhost:8002

Devilry Documentation, Release 2.0.20-

SCRIPTNAME=/etc/init.d/$NAME

Exit if the package is not installed
[-x "$DAEMON"] || exit 0

Read configuration variable file if it is present
[-r /etc/default/$NAME] && . /etc/default/$NAME

Load the VERBOSE setting and other rcS variables
. /lib/init/vars.sh

Define LSB log_* functions.
Depend on lsb-base (>= 3.0-6) to ensure that this file is present.
. /lib/lsb/init-functions

#
Function that starts the daemon/service
#
do_start()
{

Return
0 if daemon has been started
1 if daemon was already running
2 if daemon could not be started
start-stop-daemon --start --quiet --pidfile $PIDFILE --exec $DAEMON --test > /dev/null \

|| return 1
start-stop-daemon --start --quiet --pidfile $PIDFILE --exec $DAEMON -- \

$DAEMON_ARGS \
|| return 2

Add code here, if necessary, that waits for the process to be ready
to handle requests from services started subsequently which depend
on this one. As a last resort, sleep for some time.

}

#
Function that stops the daemon/service
#
do_stop()
{

Return
0 if daemon has been stopped
1 if daemon was already stopped
2 if daemon could not be stopped
other if a failure occurred
start-stop-daemon --stop --quiet --retry=TERM/30/KILL/5 --pidfile $PIDFILE --name $NAME
RETVAL="$?"
["$RETVAL" = 2] && return 2
Wait for children to finish too if this is a daemon that forks
and if the daemon is only ever run from this initscript.
If the above conditions are not satisfied then add some other code
that waits for the process to drop all resources that could be
needed by services started subsequently. A last resort is to
sleep for some time.
start-stop-daemon --stop --quiet --oknodo --retry=0/30/KILL/5 --exec $DAEMON
["$?" = 2] && return 2
Many daemons don’t delete their pidfiles when they exit.
rm -f $PIDFILE
return "$RETVAL"

1.2. Devilry sysadmin docs 29

Devilry Documentation, Release 2.0.20-

}

#
Function that sends a SIGHUP to the daemon/service
#
do_reload() {

#
If the daemon can reload its configuration without
restarting (for example, when it is sent a SIGHUP),
then implement that here.
#
start-stop-daemon --stop --signal 1 --quiet --pidfile $PIDFILE --name $NAME
return 0

}

case "$1" in
start)

["$VERBOSE" != no] && log_daemon_msg "Starting $DESC" "$NAME"
do_start
case "$?" in

0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
2) ["$VERBOSE" != no] && log_end_msg 1 ;;

esac
;;

stop)
["$VERBOSE" != no] && log_daemon_msg "Stopping $DESC" "$NAME"
do_stop
case "$?" in

0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
2) ["$VERBOSE" != no] && log_end_msg 1 ;;

esac
;;

#reload|force-reload)
#
If do_reload() is not implemented then leave this commented out
and leave ’force-reload’ as an alias for ’restart’.
#
#log_daemon_msg "Reloading $DESC" "$NAME"
#do_reload
#log_end_msg $?
#;;

restart|force-reload)
#
If the "reload" option is implemented then remove the
’force-reload’ alias
#
log_daemon_msg "Restarting $DESC" "$NAME"
do_stop
case "$?" in
0|1)

do_start
case "$?" in

0) log_end_msg 0 ;;
1) log_end_msg 1 ;; # Old process is still running

*) log_end_msg 1 ;; # Failed to start
esac
;;

*)

30 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Failed to stop
log_end_msg 1
;;

esac
;;

*)
#echo "Usage: $SCRIPTNAME {start|stop|restart|reload|force-reload}" >&2
echo "Usage: $SCRIPTNAME {start|stop|restart|force-reload}" >&2
exit 3
;;

esac

:

Setup Nginx, Apache or some other web proxy server with SSL

You need to configure your webserver to act as a reverse proxy that forwards all traffic from port 443 (the https port)
to 127.0.0.0:8002.

The webserver must use SSL, and it should redirect traffic from port 80 to port 443.

Refer to the Gunicorn documentation for more information.

Debug problems

To test that everything works as expected, you can use the Django devserver in DEBUG-mode. The devserver serves
static files, so you do not need a webserver. It does not use SSL, so be VERY careful when running it on an extrnal
NIC (like the example with 0.0.0.0 below).

First, enable debug-mode in your ~/devilrydeploy/devilry_settings.py:

DEBUG = True

Then run the devserver:

$ venv/bin/python manange.py runserver

and open http://localhost:8000. You can tell the testserver to allow external connections, and to listen on another port
with:

$ venv/bin/python manange.py runserver 0.0.0.0:9000 --insecure

Warning: NEVER use the devserver or DEBUG=True in production. It is insecure and slow.

Note: Some browsers have issues with loading the Devilry javascript sources from the devserver. We recommend
that you use a recent version of Chrome, Firefox or Safari if you have problems.

Update Devilry

Warning: These are general instructions that work if we only have code changes. Refer to the migration guide
for each new version for the correct instructions.

1.2. Devilry sysadmin docs 31

http://gunicorn.org/
http://localhost:8000

Devilry Documentation, Release 2.0.20-

Note: Remember that you should run all these commands as the system user you created in Getting started. The
exception is, of course, stopping/starting Supervisord if you use an init script.

1. Update the version of the devilry library in your ~/devilrydeploy/requirements.txt.

2. Stop Supervisord.

3. Update Devilry using PIP:

$ cd ~/devilrydeploy
$ venv/bin/pip install -r requirements.txt

4. Start Supervisord.

Autoset email from the authentication backend username

If you have an authentication backend that uses username, and it does not set an email for your users, you will
probably want to add the devilry.devilry_autoset_empty_email_by_username app to automatically
set an email based on usernames.

To enable this app, add the following to your ~/devilrydeploy/devilry_settings.py:

INSTALLED_APPS += [’devilry.apps.autoset_empty_email_by_username’]

#: Email pattern. The ’devilry.devilry_autoset_empty_email_by_username’ app
#: automatically sets email to "<username>@DEVILRY_DEFAULT_EMAIL_SUFFIX"
#: when a user is saved.
DEVILRY_DEFAULT_EMAIL_SUFFIX = ’example.com’

Devilry Managment Commands

This section describe the managment commands available in devilry. To learn more about Django and their admin-
istrative support visit the django managment commands page in their docs. The set of commands may be altered or
extended by packages used in Devilry.

Django managment commands follow a strict and well defined interface and is easy to extend and customize. More
info can be found on the custom django-admin commands page. Devilry provides the following commands to ease
the administration tasks for Devilry maintainers. If you find the list incomplete and or want a broader support, you are
welcome to post an issue on the Devilry project issue tracker at any time.

The source code of the commands can be found in the official Devilry repository in the superadmin managment
commands directory.

devilry_nodeadd

django.py devilry_nodeadd <node path> <short name>

Creates a new node in the Devilry node hierarchy. To create a root node use None as <node path>.

--admins Comma separated list of usernames to set as admins on the node

--long_name A longer and more descriptive name of the node.

32 Chapter 1. Table of contents

https://docs.djangoproject.com/en/1.4/ref/django-admin/
https://docs.djangoproject.com/en/1.4/howto/custom-management-commands/
https://github.com/devilry/devilry-django/issues?state=open
https://github.com/devilry/devilry-django/tree/master/src/devilry/devilry/apps/superadmin/management/commands
https://github.com/devilry/devilry-django/tree/master/src/devilry/devilry/apps/superadmin/management/commands

Devilry Documentation, Release 2.0.20-

devilry_subjectadd

django.py devilry_subjectadd <node path> <short name>

Creates a new subject within the devilry hierarchy. The path and short name are required.

--admins Comma separated list of usernames to set as admins on the node

--long_name A longer and more descriptive name of the node.

devilry_subjectadminadd

django.py devilry_subjectadminadd <subject-short_name> <admin username>

Add a user as admin on the specified subject.

devilry_subjectadminclear

django.py devilry_subjectadminclear <subject short name>

Removes all administrators from the specified subject.

devilry_subjectsearch

django.py devilry_subjectsearch <short name>

Search for a subject by short name. Matches any part of the name.

--short_name-only Only print short name (one line per short name)

devilry_periodadd

django.py devilry_periodadd <subject short name> <period short name>

Create a new period on a new subject.

--admins Comma separated list of usernames to set as admins on the node.

--long_name A longer and more descriptive name of the node.

--start-time The start time of the period on ISO format “%Y-%m-%dT%H:%M”.

--end-time The end time of the period on ISO format “%Y-%m-%dT%H:%M”.

--date-format The date format expressed in a format according to strftime

devilry_periodadminadd

django.py devilry_periodadminadd <subject-short_name> <period-short-name> <admin-username>

Add a user as admin on the period.

devilry_periodadminclear

django.py devilry_periodadminclear <subject short name> <period short name>

Clear administrators on the the subject.

1.2. Devilry sysadmin docs 33

http://docs.python.org/library/datetime.html#strftime-strptime-behavior'

Devilry Documentation, Release 2.0.20-

devilry_periodsearch

django.py devilry_periodsearch <period short name>

Searches for periods based on the specified short name

--short_name-only Only print short name (one line per short name)

devilry_periodsetrelatedexaminers

django.py devilry_periodsetrelatedexaminers <subject short name> <period short name>

Set related examiners on a period. Users are read from stdin, as a JSON encoded array of arguments to the RelatedEx-
aminer model. See relatedexaminers.json for an example.

--clearall Clear all related examiners before adding

devilry_periodsetrelatedstudents

django.py devilry_periodsetrelatedstudents <subject short name> <period short name>

Set related students on a period. Users are read from stdin, as a JSON encoded array of arguments to the RelatedStudent
model. See relatedstudents.json for an example.

--clearall Clear all related students before adding

devilry_resave_all_users

django.py devilrly_resave_all_users

Resaves all users. This command is useful if you have any apps that listens for post_save signals on User.

devilry_sync_candidates

django.py devilry_sync_candidates

Sync the cached fields in Candidate with the actual data from User.

devilry_useradd

django.py devilry_userad <username>

Creates a new user.

--email The user email address

--full_name Full name of the user

--superuser Make the user a superuser. Be careful this will give the user complete access to
everything in Devilry.

--password Password for the user login credential.

Returns a non-zero value when the user already exists in Devilry.

34 Chapter 1. Table of contents

https://github.com/devilry/devilry-django/blob/2.0.4/devilry/devilry_superadmin/examples/relatedexaminers.json
https://github.com/devilry/devilry-django/blob/2.0.4/devilry/devilry_superadmin/examples/relatedstudents.json

Devilry Documentation, Release 2.0.20-

devilry_useraddbulk

django.py devilry_useraddbulk

Reading usernames from stdin

--emailsuffix Email suffix are set on all users in the list. Example: <username>@example.com

devilry_usermod

django.py devilry_usermod <username>

Modify the credentials of an existing user

--email The user email address

--full_name Full name of the user

--superuser Make the user a superuser. Be careful this will give the user complete access to
everything in Devilry.

--normaluser Make the user a normal user, with access to everything within their rank in Dev-
ilry hierarchy

devilry_usersearch

django.py devilry_usersearch <username>

Search for a user by username. Matches any part of the username.

--username-only Only print usernames

--no-email Only matching users without an email address.

--superusers Only matching superusers

--normalusers Only matching normalusers, everybody except superusers

Migration guides

If a minor version is not listed here, it is a code-only update, which means that the update guide is all you need.

Migrating from 2.0.1 to 2.0.3

Note: We skipped 2.0.2 because of a forgotten update to version.json.

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

1.2. Devilry sysadmin docs 35

Devilry Documentation, Release 2.0.20-

Update devilry

Follow the Update guide, and set the version in requirements.txt to:

devilry==2.0.3

Migrating from 2.0.3 to 2.0.4

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Follow the Update guide, and set the version in requirements.txt to:

devilry==2.0.4

Migrating from 1.X.X to 2.0.0

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

This is the first release using the new deployment/production setup. Please follow the Getting started guide.

Devilry developer documentation

Note: Welcome to the Devilry developer documentation. See http://devilry.org/ for general information about Devilry,
and https://github.com/devilry/devilry-django for the code.

Essentials

Setup a local development environment

Check out from GIT

If you plan to develop devilry, you should fork the devilry-django repo, changes to your own repo and request inclusion
to the master repo using github pull requests. If you are just trying out Devilry, use:

$ git clone https://github.com/devilry/devilry-django.git

36 Chapter 1. Table of contents

http://devilry.org/
https://github.com/devilry/devilry-django

Devilry Documentation, Release 2.0.20-

The master branch, which git checks out by default, is usually the latest semi-stable development version. The latest
stable version is in the latest-stable branch.

Install dependencies/requirements

Note: Devilry should work perfectly well with only Python 2.7 or later Python2 versions. Devilry does not work with
Python3 yet, but we will support it when Django and all our dependencies gets good Python3 support.

Other dependencies than are not really required, but we recommend that you:

• use Virtualenv to avoid installing anything globally, and to get a clean environment

• use Fabric because we have a lot of useful scripts written for Fabric that will ease setting up your development
environment and building various components of Devilry. See Fabric.

Note that all instructions below assume you have and want to install Fabric and Virtualenv.

Mac OSX

1. Install XCode (from app store).

2. Install command line tools for XCode (includes Git and Python):

$ xcode-select --install

3. Install other dependencies/requirements:

$ sudo easy_install virtualenv

Ubuntu Linux

$ sudo apt-get install build-essential python-dev python-virtualenv libncurses5-dev virtualenvwrapper libxslt1-dev libxml2 libxml2-dev zlib1g-dev

Setup the development virtualenv

$ mkvirtualenv devilry-django
$ pip install -r requirements/development.txt

Create a database

We have several alternatives for setting up a demo database. They all use Fabric tasks. See Fabric.

First, make sure you are in the devilry-django virtualenv:

$ workon devilry-django

You can create a fairly full featured demo database with:

$ fab autodb

... or you can create a much more minimalistic demo database with:

1.3. Devilry developer documentation 37

Devilry Documentation, Release 2.0.20-

$ fab demodb

... or you can create an empty database with:

$ fab reset_db

Note: Creating the testdata with autodb takes a lot of time, but you can start using the server as soon as the users
have been created (one of the first things the script does).

Run the Django development server

First, make sure you are in the devilry-django virtualenv:

$ workon devilry-django

Start the Django development server with:

$ python manage.py runserver

Go to http://localhost:8000/ and log in as a superuser using:

user: grandma
password: test

Or as a user which is student, examiner and admin using:

user: thor
password: test

Note: All users have password==test, and you can see all users in the superadmin interface. See the demo page
on the wiki for more info about the demo database, including recommended test users for each role.

Fabric

We use Fabric to simplify common tasks. Fabric simply runs the requested @task decorated functions in
fabfile.py.

fabfile.py is very straigt forward to read if you wonder what the tasks actually do. The
fabric.api.local(...) function runs an executable on the local machine.

The devilry testsuite

Run all test:

$ DJANGOENV=test python manage.py test devilry

Skip the selenium tests using:

$ SKIP_SELENIUMTESTS=1 DJANGOENV=test python manage.py test

Specify a browser for the selenium tests using (example uses Firefox):

38 Chapter 1. Table of contents

http://localhost:8000/
https://github.com/devilry/devilry-django/wiki/demo
https://github.com/devilry/devilry-django/wiki/demo
http://fabfile.org

Devilry Documentation, Release 2.0.20-

$ SELENIUM_BROWSER=Firefox DJANGOENV=test python manage.py test

Chrome is the default browser (configured in devilry.project.develop.settings.base).

Note: We use DJANGOENV=test python manage.py to run tests, because that makes manage.py use
devilry.project.develop.settings.test, which does not load Haystack or Celery.

Mocking tests

Always try to mock objects instead of creating real data unless you are actually testing something that needs real data.
Use https://pypi.python.org/pypi/mock to mock your tests.

corebuilder — Setup devilry core data structures for tests

devilry.project.develop.testhelpers.corebuilder is a module that makes it easy to create
devilry.apps.core.models data for tests.

When to use

Use this for end-to-end tests and tests where you really need real data. Always try to mock objects instead of creating
real data unless you are actually testing something that needs real data. See Mocking tests.

Howto

Each class in the core has a wrapper class in devilry.project.develop.testhelpers.corebuilder
that makes it easy to perform operations that we need to setup tests. We call these wrappers builders, and they are all
prefixed with the name of their corresponding core model and suffixed with Builder.

Using the builders is very easy:

from devilry.project.develop.testhelpers.corebuilder import NodeBuilder
duck1010builder = NodeBuilder(’duckuniversity’).add_subject(’duck1010’)
assert(duck1010builder.subject == Subject.objects.get(short_name=’duck1010’))

They can all easily be updated with new attributes:

duck1010builder.update(long_name=’DUCK1010 - Programming’)
assert(duck1010builder.subject.long_name == ’DUCK1010 - Programming’)

And they have sane defaults optimized for testing, so you can easily create a deeply nested core object. This creates
the duck1010-subject with an active period that started 3 months ago and ends in 3 months, with a single assignment
(week1), with a single group, with deadline one week from now with a single helloworld.txt delivery:

from devilry.project.develop.testhelpers.corebuilder import NodeBuilder
from devilry.project.develop.testhelpers.corebuilder import UserBuilder
peterpan = UserBuilder(username=’peterpan’)
helloworld_filemetabuilder = NodeBuilder(’ducku’)\

.add_subject(’duck1010’)\

.add_6month_active_period(’current’)\

.add_assignment(’week1’)\

.add_group(students=[peterpan.user])\

1.3. Devilry developer documentation 39

https://pypi.python.org/pypi/mock

Devilry Documentation, Release 2.0.20-

.add_deadline_in_x_weeks(weeks=1)\

.add_delivery()\

.add_filemeta(filename=’helloworld.txt’, data=’Hello world’)

Since we often need to add a single subject or a single active period, we have shortcuts for that:

from devilry.project.develop.testhelpers.corebuilder import SubjectBuilder
from devilry.project.develop.testhelpers.corebuilder import PeriodBuilder
duck1010_builder = SubjectBuilder.quickadd_ducku_duck1010()
currentperiod_builder = PeriodBuilder.quickadd_ducku_duck1010_active()

Note: These shortcuts is not there just to save a couple of keystrokes. They are there to make sure we use a uniform
test setup in 98% of our tests. As long as you just need a single subject or period, you MUST use these shortcuts (to
get a patch accepted in Devilry).

Magic and defaults

The builders have very little magic, but they have some defaults that make sense when testing:

• long_name is set to short_name when it is not specified explicitly.

• All BaseNodes (the models with short and long name) takes the short_name as the first argument and the
long_name as the second argument.

• Time of delivery (for DeliveryBuilder and DealdineBuilder.add_delivery()) default to now.

• Default publishing_time for assignments is now.

• UserBuilder defaults to setting email to <username>@example.com.

These defaults are all handled in the constructor of their builder-class. All the defaults can be overridden by specifying
a value for them.

Reload from DB

You often need to create an object that is changed by the code you are testing, and then check that the change
has made it to the database. All our builders implement ReloadableDbBuilderInterface which includes
reload_from_db().

ReloadableDbBuilderInterface

class devilry.project.develop.testhelpers.corebuilder.ReloadableDbBuilderInterface
All the builders implement this interface.

update(**attributes)
Update the object wrapped by the builder with the given attributes. Saves the object, and reloads it from
the database.

reload_from_db(**attributes)
Reloads the object wrapped by the builder from the database. Perfect when you create an object that is
changed by the code you are testing, and you want to check that the change has made it to the database.

40 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

UserBuilder

class devilry.project.develop.testhelpers.corebuilder.UserBuilder
Creates a User object for testing. Also creates the DevilryUserProfile, and methods for editing both the User
and the profile.

__init__(username, full_name=None, email=None)
Creates a new User with password set to test, and the devilry.apps.core.models.DevilryUserProfile
created.

Parameters
• username – The username of the new user.
• full_name – Optional full_name. Defaults to None.
• email – Optional email. Defaults to <username>@example.com.

update(**attributes)
Update the User with the given attributes. Reloads the object from the database.

update_profile(**attributes)
Update the devilry.apps.core.models.DevilryUserProfile with the given attributes.
Reloads the object from the database.

NodeBuilder

class devilry.project.develop.testhelpers.corebuilder.NodeBuilder

node
The Node wrapped by this builder.

__init__(short_name, long_name=None, **kwargs)
Creates a new Node with the given attributes.

Parameters
• short_name – The short_name of the Node.
• long_name – The long_name of the Node. Defaults to short_name if
None.

• kwargs – Other arguments for the Node constructor.

add_node(*args, **kwargs)
Adds a childnode to the node. args and kwargs are forwarded to NodeBuilder with
kwargs[’parentnode’] set to this node.

Return type NodeBuilder.

add_subject(*args, **kwargs)
Adds a subject to the node. args and kwargs are forwarded to SubjectBuilder with
kwargs[’parentnode’] set to this node.

Return type SubjectBuilder.

SubjectBuilder

class devilry.project.develop.testhelpers.corebuilder.SubjectBuilder

subject
The Subject wrapped by this builder.

1.3. Devilry developer documentation 41

Devilry Documentation, Release 2.0.20-

__init__(short_name, long_name=None, **kwargs)
Creates a new Subject with the given attributes.

Parameters
• short_name – The short_name of the Subject.
• long_name – The long_name of the Subject. Defaults to short_name if
None.

• kwargs – Other arguments for the Subject constructor.

classmethod quickadd_ducku_duck1010()
When we need just a single subject, we use this shortcut method instead of writing:

NodeBuilder(’ducku’).add_subject(’duck1010’)

This is not just to save a couple of letters, but also to promote a common setup for simple tests.

add_period(*args, **kwargs)
Adds a period to the subject. args and kwargs are forwarded to PeriodBuilder with
kwargs[’parentnode’] set to this subject.

Return type PeriodBuilder.

add_6month_active_period(*args, **kwargs)
Shortcut for adding add_period() with start_time 3*30 days ago, and end_time in 3*30
days. args and kwargs is forwarded to add_period, but with start_time and end_time set in
kwargs.

If no short_name is provided, it defaults to active.
Return type PeriodBuilder.

add_6month_lastyear_period(*args, **kwargs)
Shortcut for adding add_period() with start_time 365-30*3 days ago, and end_time
365+3*30 days ago. args and kwargs is forwarded to add_period, but with start_time and
end_time set in kwargs.

If no short_name is provided, it defaults to lastyear. :rtype: PeriodBuilder.

add_6month_nextyear_period(*args, **kwargs)
Shortcut for adding add_period() with start_time in 365-30*3 days, and end_time in
365+3*30 days. args and kwargs is forwarded to add_period, but with start_time and
end_time set in kwargs.

If no short_name is provided, it defaults to nextyear.
Return type PeriodBuilder.

PeriodBuilder

class devilry.project.develop.testhelpers.corebuilder.PeriodBuilder

period
The Period wrapped by this builder.

__init__(short_name, long_name=None, **kwargs)
Creates a new Period with the given attributes.

Parameters
• short_name – The short_name of the Period.
• long_name – The long_name of the Period. Defaults to short_name if
None.

• kwargs – Other arguments for the Period constructor.

42 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

add_assignment(*args, **kwargs)
Adds an assignment to the period. args and kwargs are forwarded to AssignmentBuilder with
kwargs[’parentnode’] set to this period.

Return type AssignmentBuilder.

classmethod quickadd_ducku_duck1010_active()
When we need just a single active period, we use this shortcut method instead of writing:

NodeBuilder(’ducku’).add_subject(’duck1010’).add_6month_active_period(’current’)

This is not just to save a couple of letters, but also to promote a common setup for simple tests.

AssignmentBuilder

class devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder

assignment
The Assignment wrapped by this builder.

__init__(short_name, long_name=None, **kwargs)
Creates a new Assignment with the given attributes.

Parameters
• short_name – The short_name of the Assignment.
• long_name – The long_name of the Assignment. Defaults to short_name

if None.
• publishing_time – The publishing_time of the Assignment. Defaults to

now.
• kwargs – Other arguments for the Assignment constructor.

add_group(*args, **kwargs)
Adds an assignment group to the period. args and kwargs are forwarded to
AssignmentGroupBuilder with kwargs[’parentnode’] set to this assignment.

Return type AssignmentGroupBuilder.

AssignmentGroupBuilder

class devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder

assignment_group
The AssignmentGroup wrapped by this builder.

__init__(students=[], candidates=[], examiners=[], **kwargs)
Creates a new AssignmentGroup with the given attributes.

Parameters
• students – Forwarded to add_students().
• candidates – Forwarded to add_candidates().
• examiners – Forwarded to add_examiners().
• kwargs – Arguments for the AssignmentGroup constructor.

add_students(*users)
Add the given users as candidates without a candidate ID on this assignment group.

Returns self (to enable us to nest the method call).

1.3. Devilry developer documentation 43

Devilry Documentation, Release 2.0.20-

add_examiners(*users)
Add the given users as examiners on this assignment group.

Returns self (to enable us to nest the method call).

add_students(*candidates)
Add the given candidates to this assignment group.

Parameters candidates – devilry.apps.core.models.Candidate objects.
Returns self (to enable us to nest the method call).

add_deadline(*args, **kwargs)
Adds an deadline to the assignment. args and kwargs are forwarded to DeadlineBuilder with
kwargs[’assignment_group’] set to this assignment_group.

Return type AssignmentGroupBuilder.

add_deadline_in_x_weeks(weeks, *args, **kwargs)
Calls add_deadline() with kwargs[deadline] set weeks weeks in the future.

Return type AssignmentGroupBuilder.

add_deadline_x_weeks_ago(weeks, *args, **kwargs)
Calls add_deadline() with kwargs[deadline] set weeks weeks in the past.

Return type DeadlineBuilder.

DeadlineBuilder

class devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder

deadline
The Deadline wrapped by this builder.

__init__(**kwargs)
Creates a new AssignmentGroup with the given attributes.

Parameters kwargs – Arguments for the Deadline constructor.

add_delivery(**kwargs)
Adds a delivery to the deadline. args and kwargs are forwarded to DeliveryBuilder with
kwargs[’deadline’] set to this deadline and kwargs[’successful’] defaulting to True.

Parameters kwargs – Extra kwargs for the DeliveryBuilder constructor.
Return type DeliveryBuilder.

add_delivery_after_deadline(timedeltaobject, **kwargs)
Add a delivery timedeltaobject time after this deadline expires.

Shortcut that calls add_delivery() with kwargs[’time_of_delivery’] set to
deadline.deadline + timedeltaobject.

Example - add delivery 3 weeks and 2 hours after deadline:

from datetime import datetime, timedelta
deadlinebuilder = DeadlineBuilder(deadline=datetime(2010, 1, 1))
deadlinebuilder.add_delivery_after_deadline(timedelta(weeks=3, hours=2))

Parameters kwargs – Extra kwargs for the DeliveryBuilder constructor.
Return type DeliveryBuilder.

add_delivery_before_deadline(timedeltaobject, **kwargs)
Add a delivery timedeltaobject time before this deadline expires.

44 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Shortcut that calls add_delivery() with kwargs[’time_of_delivery’] set to
deadline.deadline + timedeltaobject.

Example - add delivery 5 hours before deadline:

from datetime import datetime, timedelta
deadlinebuilder = DeadlineBuilder(deadline=datetime(2010, 1, 1))
deadlinebuilder.add_delivery_before_deadline(timedelta(hours=5))

Parameters kwargs – Extra kwargs for the DeliveryBuilder constructor.
Return type DeliveryBuilder.

add_delivery_x_hours_after_deadline(timedeltaobject, **kwargs)
Add a delivery hours hours after this deadline expires.

Shortcut that calls add_delivery_after_deadline() with timedeltaobject set to
timedelta(hours=hours).

Parameters
• hours – Number of hours.
• kwargs – Extra kwargs for the DeliveryBuilder constructor.

Return type DeliveryBuilder.

add_delivery_x_hours_before_deadline(timedeltaobject, **kwargs)
Add a delivery hours hours before this deadline expires.

Shortcut that calls add_delivery_before_deadline() with timedeltaobject set to
timedelta(hours=hours).

Parameters
• hours – Number of hours.
• kwargs – Extra kwargs for the DeliveryBuilder constructor.

Return type DeliveryBuilder.

DeliveryBuilder

class devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder

delivery
The Delivery wrapped by this builder.

__init__(**kwargs)
Creates a new Delivery with the given attributes. If time_of_delivery is not provided, it defaults
to now.

Parameters kwargs – Arguments for the Delivery constructor.

add_filemeta(**kwargs)
Adds a filemeta to the delivery. kwargs is forwarded to FilteMetaBuilder with
kwargs[’delivery’] set to this delivery.

Example:

deliverybuilder.add_filemeta(
filename=’test.txt’,
data=’This is a test.’

)

Parameters kwargs – Kwargs for the FileMetaBuilder constructor.
Return type FileMetaBuilder.

1.3. Devilry developer documentation 45

Devilry Documentation, Release 2.0.20-

add_feedback(**kwargs)
Adds a feedback to the delivery. kwargs is forwarded to StaticFeedbackBuilder with
kwargs[’delivery’] set to this delivery.

Example:

deliverybuilder.add_feedback(
points=10,
grade=’10/100’,
is_passing_grade=False,
saved_by=UserBuilder(’testuser’).user

)

Parameters kwargs – Kwargs for the StaticFeedbackBuilder constructor.
Return type StaticFeedbackBuilder.

add_passed_feedback(**kwargs)
Shortcut that adds a passed feedback to the delivery. kwargs is forwarded to add_feedback() with:

•points=1
•grade="Passed"
•is_passing_grade=True

Example:

deliverybuilder.add_passed_feedback(saved_by=UserBuilder(’testuser’).user)

Parameters kwargs – Extra kwargs for add_feedback(). Is updated with :points, grade
and is_passing_grade as documented above.

Return type StaticFeedbackBuilder.

add_failed_feedback(**kwargs)
Shortcut that adds a failed feedback to the delivery. kwargs is forwarded to add_feedback() with:

•points=0
•grade="Failed"
•is_passing_grade=False

Example:

deliverybuilder.add_failed_feedback(saved_by=UserBuilder(’testuser’).user)

Parameters kwargs – Extra kwargs for add_feedback(). Is updated with :points, grade
and is_passing_grade as documented above.

Return type StaticFeedbackBuilder.

FileMetaBuilder

class devilry.project.develop.testhelpers.corebuilder.FileMetaBuilder

filemeta
The FileMeta wrapped by this builder.

__init__(delivery, filename, data)
Creates a new FileMeta. Since FileMeta just points to files on disk, and creating those files requires
iterators and extra stuff that is almost never needed for tests, we provide an easier method for creating
files with FileMetaBuilder.

Parameters
• delivery – The Delivery object.

46 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

• filename – A filename.
• data – The file contents as a string.

StaticFeedbackBuilder

class devilry.project.develop.testhelpers.corebuilder.StaticFeedbackBuilder

feedback
The StaticFeedback wrapped by this builder.

__init__(**kwargs)
Creates a new StaticFeedback with the given attributes.

Parameters kwargs – Arguments for the StaticFeedback constructor.

Essential wiki pages for developers

• How to write API documentation - wiki page

• More info available on the Developer wiki page.

API and utilities

devilry.apps.core.models — Devilry core datastructure

(edit the images umldiagram1 and umldiagram2 using yuml.me)

Functions and attributes

devilry.apps.core.models.model_utils.pathsep
Path separator used by node-paths. The value is ’.’, and it must not be changed.

devilry.apps.core.models.model_utils.splitpath(path, expected_len=0)
Split the path on pathsep and return the resulting list. Example:

>>> splitpath(’uio.ifi.matnat’)
[’uio’, ’ifi’, ’matnat’]
>>> splitpath(’uio.ifi.matnat’, expected_len=2)
Traceback (most recent call last):
...
ValueError: Path must have exactly 2 parts

Parameters expected_len – Expected length of the resulting list. If the resulting list is not exactly
the given length, ValueError is raised. If expected_len is 0 (default), no checking is
done.

BaseNode

class devilry.apps.core.models.BaseNode
Bases: devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin,
devilry.apps.core.models.save_interface.SaveInterface

1.3. Devilry developer documentation 47

https://github.com/devilry/devilry-django/wiki/How-to-write-API-documentation
https://github.com/devilry/devilry-django/wiki/Developer
http://yuml.me/diagram/plain;dir:LR;scale:80;/class/edit/{[}Node{]}++1-subjects\T1\textgreater {}*{[}Subject{]},{[}Node{]}++0-child-nodes\T1\textgreater {}*{[}Node{]},{[}Subject{]}++1-periods\T1\textgreater {}*{[}Period{]},{[}Period{]}++1-assignments\T1\textgreater {}*{[}Assignment{]},{[}Assignment{]}++1-assignmentgroups\T1\textgreater {}*{[}AssignmentGroup{]}
http://yuml.me/diagram/scruffy/class/edit/%5BAssignmentGroup%5D++1-deadlines%20%3E*%5BDeadline%5D,%20%5BAssignmentGroup%5D++1-candidates%20%3E*%5BCandidate%5D,%20%5BDelivery%5D++1-staticfeedbacks%20%3E*%5BStaticFeedback%5D,%20%5BDelivery%5D++1-filemetas%20%3E*%5BFileMeta%5D,%20%5BDeadline%5D++1-deliveries%20%3E*%5BDelivery%5D,%20%5BDelivery%5D++1-delivered_by%20%3E1%5BCandidate%5D

Devilry Documentation, Release 2.0.20-

The base class of the Devilry hierarchy. Implements basic functionality used by the other Node classes. This is
an abstract datamodel, so it is never used directly.

short_name
A django.db.models.SlugField with max 20 characters. Only numbers, letters, ‘_’ and ‘-‘.

long_name
A django.db.models.CharField with max 100 characters. Gives a longer description than short_name.

AbstractIsAdmin

class devilry.apps.core.models.AbstractIsAdmin
Bases: object

Abstract class implemented by all classes where it is natural to need to check if a user has admin rights.

classmethod q_is_admin(user_obj)
Get a django.db.models.Q object matching all objects of this type where the given user is admin. The
matched result is not guaranteed to contain unique items, so you should use distinct() on the queryset if
this is required.

This must be implemented in all subclassed.

classmethod where_is_admin(user_obj, *related_fields)
Get all objects of this type where the given user is admin.

classmethod where_is_admin_or_superadmin(user_obj, *related_fields)
Get all objects of this type where the given user is admin, or all objects if the user is superadmin.

AbstractIsExaminer

class devilry.apps.core.models.AbstractIsExaminer
Bases: object

Abstract class implemented by all classes where it is natural to need to check if a user is examiner.

classmethod q_published(old=True, active=True)
Return a django.models.Q object which matches all items of this type where
Assignment.publishing_time is in the past.

Parameters
• old – Include assignments where Period.end_time is in the past?
• active – Include assignments where Period.end_time is in the future?

classmethod q_is_examiner(user_obj)
Return a django.models.Q object which matches items where the given user is examiner.

classmethod where_is_examiner(user_obj)
Get all items of this type where the given user_obj is examiner on one of the assignment groups.

Parameters user_obj – A django.contrib.auth.models.User object.
Return type QuerySet

classmethod published_where_is_examiner(user_obj, old=True, active=True)
Get all published items of this type where the given user_obj is examiner on one of the assignment
groups. Combines q_is_examiner() and q_published().

Parameters
• user_obj – q_is_examiner().
• old – q_published().
• active – q_published().

48 Chapter 1. Table of contents

http://docs.djangoproject.com/en/dev/ref/models/fields/#slugfield
http://docs.djangoproject.com/en/dev/ref/models/fields/#charfield
http://docs.djangoproject.com/en/dev/topics/auth/#users

Devilry Documentation, Release 2.0.20-

Returns A django.db.models.query.QuerySet with duplicate assignments eliminated.

classmethod active_where_is_examiner(user_obj)
Shortcut for published_where_is_examiner() with old=False.

classmethod old_where_is_examiner(user_obj)
Shortcut for published_where_is_examiner() with active=False.

Node

A node at the top of the navigation tree. It is a generic element used to organize administrators. A Node can be
organized below another Node, and it can only have one parent.

Let us say you use Devilry within two departments at Fantasy University; informatics and mathematics. The university
has an administration, and each department have their own administration. You would end up with this node-hierarchy:

• Fantasy University

– Department of informatics

– Department of mathematics

class devilry.apps.core.models.Node(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode,
devilry.apps.core.models.model_utils.Etag

This class is typically used to represent a hierarchy of institutions, faculties and departments.

parentnode
A django.db.models.ForeignKey that points to the parent node, which is always a Node.

admins
A django.db.models.ManyToManyField that holds all the admins of the Node.

child_nodes
A set of child_nodes of type Node for this node

subjects
A set of subjects for this node

etag
A DateTimeField containing the etag for this object.

iter_childnodes()
Recursively iterates over all child nodes, and their child nodes. For a list of direct child nodes, use atribute
child_nodes instead.

clean(*args, **kwargs)
Validate the node, making sure it does not do something stupid.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if:
•The node is it’s own parent.
•The node is the child of itself or one of its childnodes.

is_empty()
Returns True if this Node does not contain any childnodes or subjects.

1.3. Devilry developer documentation 49

http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey
http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Devilry Documentation, Release 2.0.20-

Subject

A subject is a course, seminar, class or something else being given regularly. A subject is further divided into periods.

class devilry.apps.core.models.Subject(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer,
devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate,
devilry.apps.core.models.model_utils.Etag

parentnode
A django.db.models.ForeignKey that points to the parent node, which is always a Node.

admins
A django.db.models.ManyToManyField that holds all the admins of the Node.

short_name
A django.db.models.SlugField with max 20 characters. Only numbers, letters, ‘_’ and ‘-‘. Unlike all other
children of BaseNode, Subject.short_name is unique. This is mainly to avoid the overhead of having to
recurse all the way to the top of the node hierarchy for every unique path.

periods
A set of periods for this subject.

etag
A DateTimeField containing the etag for this object.

get_path()
Only returns short_name for subject since it is guaranteed to be unique.

is_empty()
Returns True if this Subject does not contain any periods.

Period

A Period is a limited period of time, like spring 2009, week 34 2010 or even a single day.

class devilry.apps.core.models.Period(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer,
devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate,
devilry.apps.core.models.model_utils.Etag

A Period represents a period of time, for example a half-year term at a university.

parentnode
A django.db.models.ForeignKey that points to the parent node, which is always a Subject.

start_time
A django.db.models.DateTimeField representing the starting time of the period.

end_time
A django.db.models.DateTimeField representing the ending time of the period.

admins
A django.db.models.ManyToManyField that holds all the admins of the node.

assignments
A Django RelatedManager of assignments for this period.

50 Chapter 1. Table of contents

http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey
http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield
http://docs.djangoproject.com/en/dev/ref/models/fields/#slugfield
http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey
http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield
http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield
http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield

Devilry Documentation, Release 2.0.20-

relatedexaminer_set
A Django RelatedManager of RelatedExaminers for this period.

relatedstudent_set
A Django RelatedManager of RelatedStudents for this period.

etag
A DateTimeField containing the etag for this object.

clean(*args, **kwargs)
Validate the period.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if start_time is after end_time.

is_active()
Returns true if the period is active

classmethod q_is_active()
Get a django.db.models.Q object that matches all active periods (periods where start_time is in the
past, and end_time is in the future).

Example:

activeperiods = Period.objects.filter(Period.q_is_active())

is_empty()
Returns True if this Period does not contain any assignments.

subject
More readable alternative to self.parentnode.

RelatedUserBase

Base class for devilry.apps.core.models.RelatedStudent and devilry.apps.core.models.RelatedExaminer.

class devilry.apps.core.models.relateduser.RelatedUserBase(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin

Common fields for examiners and students related to a period.

period
The period that the user is related to.

user
A django.contrib.auth.models.User object. Must be unique within this period.

tags
Comma-separated list of tags. Each tag is a word with the following letters allowed: a-z and 0-9. Each
word is separated by a comma, and no whitespace.

RelatedStudent — Student on a period

A RelatedStudent is a student related to a devilry.apps.core.models.Period.

1.3. Devilry developer documentation 51

http://docs.djangoproject.com/en/dev/ref/models/instances/#id1
http://docs.djangoproject.com/en/dev/topics/auth/#users

Devilry Documentation, Release 2.0.20-

class devilry.apps.core.models.RelatedStudent(*args, **kwargs)
Bases: devilry.apps.core.models.relateduser.RelatedUserBase

Related student.

candidate_id
If a candidate has the same Candidate ID for all or many assignments in a semester, this field can be set
to simplify setting candidate IDs on each assignment.

RelatedExaminer — Examiner on a period

A RelatedExaminer is an examiner related to a devilry.apps.core.models.Period.

class devilry.apps.core.models.RelatedExaminer(*args, **kwargs)
Bases: devilry.apps.core.models.relateduser.RelatedUserBase

Related examiner.

Adds no fields to RelatedUserBase.

Assignment

Represents one assignment within a given Period in a given Subject. Each assignment contains one Assignment-
Group for each student or group of students permitted to submit deliveries. We have three main classifications of
assignments:

1. A old assignment is a assignment where Period.end_time is in the past.

2. A published assignment is a assignment where publishing_time is in the past.

3. A active assignment is a assignment where publishing_time is in the past and current time is before
Period.end_time.

class devilry.apps.core.models.Assignment(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer,
devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

parentnode
A django.db.models.ForeignKey that points to the parent node, which is always a Period.

publishing_time
A django.db.models.DateTimeField representing the publishing time of the assignment.

anonymous
A models.BooleanField specifying if the assignment should be anonymously for correcters.

admins
A django.db.models.ManyToManyField that holds all the admins of the Node.

assignmentgroups
A set of assignmentgroups for this assignment

examiners_publish_feedbacks_directly
Should feedbacks published by examiners be made avalable to the students immediately? If not, an
administrator have to publish feedbacks. See also Deadline.feedbacks_published.

scale_points_percent
Percent to scale points on this assignment by for period overviews. The default is 100, which means no
change to the points.

52 Chapter 1. Table of contents

http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey
http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield
http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield

Devilry Documentation, Release 2.0.20-

delivery_types
An integer identifying the type of deliveries allowed. Possible values:

0 Electronic deliveries using Devilry
1 Non-electronic deliveries, or deliveries made through another electronic system.
2 An alias/link to a delivery made in another Period.

deadline_handling
An integer identifying how deadlines are handled.

0 Soft deadlines. Deliveries can be added until groups are closed.
1 Hard deadlines. Deliveries can not be added after the deadline has expired.

first_deadline
A DateTimeField containing an optional first deadline for this assignment. This is metadata that the UI
can use where it is natural.

max_points
An IntegerField that contains the maximum number of points possible to achieve on this assignment. This
field may be None, and it is normally set by the grading system plugin.

DO NOT UPDATE MANUALLY. You can safely set an initial value for this manually when you create a
new assignment, but when you update this field, do so using set_max_points().

passing_grade_min_points
An IntegerField that contains the minimum number of points required to achive a passing grade on this
assignment. This means that any feedback with more this number of points or more is considered a
passing grade.

WARNING: Changing this does not have any effect on existing feedback. To actually change existing
feedback, you would have to update all feedback on the assignment, effectively creating new StaticFeed-
backs from the latest published FeedbackDrafts for each AssignmentGroup.

points_to_grade_mapper
Configures how points should be mapped to a grade. Valid choices:

•passed-failed - Points is mapped directly to passed/failed. Zero points results in a failing
grade, other points results in a passing grade.

•raw-points - The grade is <points>/<max-points>.
•table-lookup - Points is mapped to a grade via a table lookup. This
means that someone configures a mapping from point thresholds to grades using
devilry.apps.core.models.PointRangeToGrade.

grading_system_plugin_id
A CharField containing the ID of the grading system plugin this assignment uses.

students_can_create_groups
BooleanField specifying if students can join/leave groups on their own.

If this is True students should be allowed to join/leave groups. If
students_can_not_create_groups_after is specified, this students can not create groups
after students_can_not_create_groups_after even if this is True.

This does not in any way affect an admins ability to organize students in groups manually.

students_can_not_create_groups_after
Students can not create project groups after this time. Ignored if students_can_create_groups
is False.

DateTimeField that defaults to None (null).

students_can_create_groups_now
Return True if students_can_create_groups is True, and
students_can_not_create_groups_after is in the future or None.

1.3. Devilry developer documentation 53

Devilry Documentation, Release 2.0.20-

is_electronic()
Returns True if deliverytypes is 0 (electric).

New in version 1.4.0.

is_nonelectronic()
Returns True if deliverytypes is 1 (non-electric).

New in version 1.4.0.

set_max_points(max_points)
Sets max_points, and invalidates any PointToGradeMap configured for this assignment if the new
value for max_points differs from the old one.

Invalidating the PointToGradeMap ensures that the course admin has to re-evaluate the grade to point
mapping when they change max_points.

NOTE: This saves the PointToGradeMap, but not the assignment.

get_gradingsystem_plugin_api()
Shortcut for:

devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry.get(
self.grading_system_plugin_id)(self)

See: devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry.get().

has_valid_grading_setup()
Checks if this assignment is configured correctly for grading.

setup_grading(grading_system_plugin_id, points_to_grade_mapper, pass-
ing_grade_min_points=None, max_points=None)

Setup all of the simple parts of the grading system:
•grading_system_plugin_id
•points_to_grade_mapper
•passing_grade_min_points
•max_points

Does not setup:
•Grading system plugin specific configuration.
•A PointToGradeMap.

get_point_to_grade_map()
Get the PointToGradeMap for this assinment, creating if first if it does not exist.

points_is_passing_grade(points)
Checks if the given points represents a passing grade.

WARNING: This will only work if passing_grade_min_points is set. The best way to check that
is with has_valid_grading_setup().

points_to_grade(points)
Convert the given points into a grade.

WARNING: This will not work if has_valid_grading_setup() is not True.

clean(*args, **kwargs)
Validate the assignment.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if publishing_time is not between Period.start_time and
Period.end_time.

54 Chapter 1. Table of contents

http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Devilry Documentation, Release 2.0.20-

is_empty()
Returns True if this Assignment does not contain any deliveries.

is_active()
Returns True if this assignment is published, and the period has not ended yet.

Examiner

class devilry.apps.core.models.Examiner(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin

assignmentgroup
The AssignmentGroup where this groups belongs.

user
A foreign key to a User.

Candidate

class devilry.apps.core.models.Candidate(*args, **kwargs)
Bases: django.db.models.base.Model

assignment_group
The AssignmentGroup where this groups belongs.

student
A student (a foreign key to a User).

candidate_id
A optional candidate id. This can be anything as long as it is not more than 30 characters. When the
assignment is anonymous, this is the “name” shown to examiners instead of the username of the student.

AssignmentGroup

class devilry.apps.core.models.AssignmentGroup(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer,
devilry.apps.core.models.model_utils.Etag

Represents a student or a group of students.

parentnode
A django.db.models.ForeignKey that points to the parent node, which is always an Assignment.

name
An optional name for the group.

candidates
A django RelatedManager that holds the candidates on this group.

examiners
A django.db.models.ManyToManyField that holds the examiner(s) that are to correct and grade the as-
signment.

is_open
A django.db.models.BooleanField that tells you if the group can add deliveries or not.

1.3. Devilry developer documentation 55

http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey
http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield
http://docs.djangoproject.com/en/dev/ref/models/fields/#booleanfield

Devilry Documentation, Release 2.0.20-

deadlines
A django RelatedManager that holds the deadlines on this group.

tags
A django RelatedManager that holds the tags on this group.

feedback
The last StaticFeedback (by save timestamp) on this assignmentgroup.

last_deadline
The last devilry.apps.core.models.Deadline for this assignmentgroup.

etag
A DateTimeField containing the etag for this object.

delivery_status
A CharField containing the status of the group. Valid status values:

•“no-deadlines”
•“corrected”
•“closed-without-feedback”
•“waiting-for-something”

save(*args, **kwargs)
Parameters

• update_delivery_status – Update the delivery_status? This is a some-
what expensive operation, so we provide the option to avoid it if needed. Defaults
to True.

• autocreate_first_deadline_for_nonelectronic – Autocreate the first deadline if
non-electronic assignment? Defaults to True.

classmethod q_is_candidate(user_obj)
Returns a django.models.Q object matching AssignmentGroups where the given student is candidate.

classmethod where_is_candidate(user_obj)
Returns a QuerySet matching all AssignmentGroups where the given user is student.

Parameters user_obj – A django.contrib.auth.models.User object.
Return type QuerySet

classmethod published_where_is_candidate(user_obj, old=True, active=True)
Returns a QuerySet matching all published assignment groups where the given user is student.

Parameters user_obj – A django.contrib.auth.models.User object.
Return type QuerySet

classmethod active_where_is_candidate(user_obj)
Returns a QuerySet matching all active assignment groups where the given user is student.

Parameters user_obj – A django.contrib.auth.models.User object.
Return type QuerySet

classmethod old_where_is_candidate(user_obj)
Returns a QuerySet matching all old assignment groups where the given user is student.

Parameters user_obj – A django.contrib.auth.models.User object.
Return type QuerySet

should_ask_if_examiner_want_to_give_another_chance
True if the current state of the group is such that the examiner should be asked if they want to give them
another chance.

True if corrected with failing grade or closed without feedback.

56 Chapter 1. Table of contents

http://docs.djangoproject.com/en/dev/topics/auth/#users
http://docs.djangoproject.com/en/dev/topics/auth/#users
http://docs.djangoproject.com/en/dev/topics/auth/#users
http://docs.djangoproject.com/en/dev/topics/auth/#users

Devilry Documentation, Release 2.0.20-

missing_expected_delivery
Return True if the group has no deliveries, and we are expecting them to have made at least one delivery
on the last deadline.

subject
Shortcut for parentnode.parentnode.parentnode.

period
Shortcut for parentnode.parentnode.

assignment
Alias for parentnode.

short_displayname
A short displayname for the group. If the assignment is anonymous, we list the candidate IDs. If the group
has a name, the name is used, else we fall back to a comma separated list of usernames. If the group has
no name and no students, we use the ID.

See also:

https://github.com/devilry/devilry-django/issues/498

long_displayname
A long displayname for the group. If the assignment is anonymous, we list the candidate IDs.

If the assignment is not anonymous, we use a comma separated list of the displaynames (full names with
fallback to username) of the students. If the group has a name, we use the groupname with the names of
the students in parenthesis.

See also:

https://github.com/devilry/devilry-django/issues/499

get_students()
Get a string containing all students in the group separated by comma and a space, like: superman,
spiderman, batman.

WARNING: You should never use this method when the user is not an administrator.

get_examiners(separator=u’, ‘)
Get a string contaning the username of all examiners in the group separated by comma (’,’).

Parameters separator – The unicode string used to separate candidates. Defaults to u’,
’.

is_examiner(user_obj)
Return True if user is examiner on this assignment group

can_delete(user_obj)
Check if the given user is permitted to delete this AssignmentGroup. A user is permitted to delete an
object if the user is superadmin, or if the user is admin on the assignment (uses is_admin()). Only
superusers are allowed to delete AssignmentGroups where AssignmentGroup.is_empty() returns
False.

Note: This method can also be used to check if candidates can be removed from the group.

Returns True if the user is permitted to delete this object.

is_empty()
Returns True if this AssignmentGroup does not contain any deliveries.

get_active_deadline()
Get the active Deadline.

1.3. Devilry developer documentation 57

https://github.com/devilry/devilry-django/issues/498
https://github.com/devilry/devilry-django/issues/499

Devilry Documentation, Release 2.0.20-

This is always the last deadline on this group.
Returns The latest deadline or None.

can_save(user_obj)
Check if the user has permission to save this AssignmentGroup.

can_add_deliveries()
Returns true if a student can add deliveries on this assignmentgroup

Both the assignmentgroups is_open attribute, and the periods start and end time is checked.

copy_all_except_candidates()

Note: Always run this is a transaction.

pop_candidate(candidate)
Make a copy of this group using copy_all_except_candidates, and add given candidate to the
copied group and remove the candidate from this group.

Parameters candidate – A devilry.apps.core.models.Candidate object. The
candidate must be among the candidates on this group.

Note: Always run this is a transaction.

recalculate_delivery_numbers()
Query all successful deliveries on this AssignmentGroup, ordered by time_of_delivery as-
cending, and number them with the oldest delivery as number 1.

merge_into(target)
Merge this AssignmentGroup into the target AssignmentGroup. Algorithm:

•Copy in all candidates and examiners not already on the AssignmentGroup.
•Delete all copies where the original is in self or target:

– Delete all deliveries from target that are copy_of a delivery self.
– Delete all deliveries from self that are copy_of a delivery in target.

•Loop through all deadlines in this AssignmentGroup, and for each deadline:

If the datetime and text of the deadline matches one already in target, move the remaining
deliveries into the target deadline.

If the deadline and text does NOT match a deadline already in target, change assignmentgroup
of the deadline to the master group.

•Recalculate delivery numbers of target using recalculate_delivery_numbers().
•Run self.delete().
•Set the latest feedback on target as the active feedback.

Note: The target.name or target.is_open is not changed.

Note: Everything except setting the latest feedback runs in a transaction. Setting the latest feedback does
not run in transaction because we need to save the with feedback=None, and then set the new latest
feedback to avoid IntegrityError.

classmethod merge_many_groups(sources, target)
Loop through the sources-iterable, and for each source in the iterator, run
source.merge_into(target).

get_status()
Get the status of the group. Calculated with this algorithm:

58 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

if ‘‘delivery_status == ’waiting-for-something’‘‘
if assignment.delivery_types==NON_ELECTRONIC:

"waiting-for-feedback"
else

if before deadline
"waiting-for-deliveries"

if after deadline:
"waiting-for-feedback"

else
delivery_status

AssignmentGroupTag

class devilry.apps.core.models.AssignmentGroupTag(*args, **kwargs)
Bases: django.db.models.base.Model

An AssignmentGroup can be tagged with zero or more tags using this class.

assignment_group
The AssignmentGroup where this groups belongs.

tag
The tag. Max 20 characters. Can only contain a-z, A-Z, 0-9 and “_”.

Deadline

Each AssignmentGroup have zero or more deadlines.

class devilry.apps.core.models.Deadline(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer,
devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

A deadline on an AssignmentGroup. A deadline contains zero or more deliveries, the time of the deadline and
an optional text.

assignment_group
The AssignmentGroup where the deadline is registered.

deadline
The deadline a DateTimeField.

text
A optional deadline text.

deliveries
A django RelatedManager that holds the deliveries on this group. NOTE: You should normally not
use this directly, but rather use meth:.query_successful_deliveries.

deliveries_available_before_deadline
Should deliveries on this deadline be available to examiners before the deadline expires? This is set by
students.

feedbacks_published
If this boolean field is True, the student can see all StaticFeedback
objects associated with this Deadline through a Delivery. See also
Assignment.examiners_publish_feedbacks_directly.

1.3. Devilry developer documentation 59

Devilry Documentation, Release 2.0.20-

added_by
The User that added this deadline. Can be None, and all deadlines created before Devilry version 1.4.0
has this set to None.

New in version 1.4.0.

why_created
Why was this deadline created? Valid choices:

•None: Why the deadline was created is unknown.
•"examiner-gave-another-chance": Created because the examiner elected to give the stu-
dent another chance to pass the assignment.

Can be None, and all deadlines created before Devilry version 1.4.0 has this set to None.

New in version 1.4.0.

classmethod reduce_datetime_precision(datetimeobj)
Reduce the precition of the datetimeobj to make it easier to compare and harder to make distinct
deadlines that is basically the same time. We:

•Set seconds and microseconds to 0. This makes “Friday 14:59”, “Friday 14:59:00” and “Friday
14:59:59” equal. We do not allow specifying seconds in the UI, and handling this right in the core
makes this easier to handle across the board.

•Set tzinfo to None. We do not support timezones in Devilry, so including it makes no sense.

Returns A copy of datetimeobj with second and microsecond set to 0, and tzinfo set to
None.

clean(*args, **kwargs)
Validate the deadline.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if:
•deadline is before Assignment.publishing_time.
•deadline is not before Period.end_time.

save(*args, **kwargs)
Parameters autocreate_delivery_if_nonelectronic – Autocreate a delivery if this save cre-

ates the deadline, and the assignment is non-electronic. Defaults to True.

query_successful_deliveries()
Returns a django QuerySet that filters all the successful deliveries on this group.

is_empty()
Returns True if this Deadline does not contain any deliveries.

can_delete(user_obj)
Check if the given user is permitted to delete this object. A user is permitted to delete an Deadline if
the user is superadmin, or if the user is admin on the assignment. Only superusers are allowed to delete
deadlines with any deliveries.

Returns True if the user is permitted to delete this object.

copy(newgroup)
Copy this deadline into newgroup, including all deliveries and filemetas, with the actual file data.

Note: Always run this is a transaction.

Warning: This does not autoset the latest feedback as active on the group. You need to handle that
yourself after the copy.

60 Chapter 1. Table of contents

http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Devilry Documentation, Release 2.0.20-

is_in_the_future()
Return True if this deadline is in the future.

is_in_the_past()
Return True if this deadline is in the past.

has_text()
Checks that the text is not None or an empty string.

Delivery

Examples Simple example:

assignmentgroup = AssignmentGroup.objects.get(id=1)
assignmentgroup.deliveries.create(delivered_by=student1,

successful=True)

More advanced example:

assignmentgroup = AssignmentGroup.objects.get(id=1)
delivery = assignmentgroup.deliveries.create(delivered_by=student1,

successful=False)
delivery.add_file(’test.py’, [’print’, ’hello world’])
delivery.add_file(’test2.py’, [’print "hi"’])
delivery.successful = True
delivery.save()

The input to add_file() will normally be a file-like object, but as shown above it can be anything you want.

Delivery API
class devilry.apps.core.models.Delivery(*args, **kwargs)

Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin,
devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer

A class representing a given delivery from an AssignmentGroup.

How to create a delivery:

deadline = Deadline.objects.get(....)
candidate = Candidate.objects.get(....)
delivery = Delivery(

deadline=deadline,
delivered_by=candidate)

delivery.set_number()
delivery.full_clean()
delivery.save()

time_of_delivery
A django.db.models.DateTimeField that holds the date and time the Delivery was uploaded.

deadline
A django.db.models.ForeignKey pointing to the Deadline for this Delivery.

number
A django.db.models.fields.PositiveIntegerField with the delivery-number within this assignment-group.

1.3. Devilry developer documentation 61

http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield
http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey

Devilry Documentation, Release 2.0.20-

This number is automatically incremented within each assignmentgroup, starting from 1. Must be unique
within the assignment-group. Automatic incrementation is used if number is None when calling save().

delivered_by
A django.db.models.ForeignKey pointing to the user that uploaded the Delivery

successful
A django.db.models.BooleanField telling whether or not the Delivery was successfully uploaded.

after_deadline
A django.db.models.BooleanField telling whether or not the Delivery was delived after deadline..

filemetas
A set of filemetas for this delivery.

feedbacks
A set of feedbacks on this delivery.

etag
A DateTimeField containing the etag for this object.

copy_of
Link to a delivery that this delivery is a copy of. This is set by Delivery.copy().

last_feedback
The last StaticFeedback on this delivery. This is updated each time a feedback is added.

copy_of
If this delivery is a copy of another delivery, this ForeignKey points to that other delivery.

copies
The reverse of copy_of - a queryset that returns all copies of this delivery.

after_deadline
Compares the deadline and time of delivery. If time_of_delivery is greater than the deadline, return True.

classmethod q_is_candidate(user_obj)
Returns a django.models.Q object matching Deliveries where the given student is candidate.

is_last_delivery
Returns True if this is the last delivery for this AssignmentGroup.

assignment_group
Shortcut for self.deadline.assignment_group.assignment.

assignment
Shortcut for self.deadline.assignment_group.assignment.

add_file(filename, iterable_data)
Add a file to the delivery.

Parameters
• filename – A filename as defined in FileMeta.
• iterable_data – A iterable yielding data that can be written to file using the

write() method of a storage backend (byte strings).

clean(*args, **kwargs)
Validate the delivery.

copy(newdeadline)
Copy this delivery, including all FileMeta’s and their files, and all feedbacks into newdeadline. Sets
the copy_of attribute of the created delivery.

Note: Always run this in a transaction.

62 Chapter 1. Table of contents

http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey
http://docs.djangoproject.com/en/dev/ref/models/fields/#booleanfield
http://docs.djangoproject.com/en/dev/ref/models/fields/#booleanfield

Devilry Documentation, Release 2.0.20-

Warning: This does not autoset the latest feedback as feedback or the last_delivery on the
group. You need to handle that yourself after the copy.

Returns The newly created, cleaned and saved delivery.

is_electronic()
Returns True if Delivery.delivery_type is 0 (electric).

is_nonelectronic()
Returns True if Delivery.delivery_type is 1 (non-electric).

StaticFeedback

class devilry.apps.core.models.StaticFeedback(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer,
devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

Represents a feedback for a Delivery.

Each delivery can have zero or more feedbacks. Each StaticFeedback object stores static data that an examiner
has published on a delivery. StaticFeedback is created and edited in a grade+feedback editor in a grade plugin,
and when an examiner choose to publish feedback, a static copy of the data he/she created in the grade+feedback
editor is stored in a StaticFeedback.

Feedbacks are only visible to students when Deadline.feedbacks_published on the related deadline
is True. Feedbacks are related to Deadlines through its delivery.

Students are presented with the last feedback on a delivery, however they can browse every StaticFeedback on
their deliveries. This history is to protect the student from administrators or examiners that change published
feedback to avoid that a student can make an issue out of a bad feedback.

NOTE: When a StaticFeedback is saved, the corresponding AssignmentGroup.feedback is updated to
the newly created StaticFeedback.

rendered_view
The rendered HTML view.

saved_by
The django.contrib.auth.models.User that created the StaticFeedback.

save_timestamp
Date/time when this feedback was created.

delivery
A django.db.models.ForeignKey that points to the Delivery where this feedback belongs.

grade
The grade as a short string (max 12 chars).

points
The number of points (integer).

is_passing_grade
Boolean is passing grade?

classmethod q_is_candidate(user_obj)
Returns a django.models.Q object matching Deliveries where the given student is candidate.

1.3. Devilry developer documentation 63

http://docs.djangoproject.com/en/dev/topics/auth/#users
http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey

Devilry Documentation, Release 2.0.20-

classmethod q_is_examiner(user_obj)
Returns a django.models.Q object matching Feedbacks where the given student is candidate.

classmethod from_points(points, assignment=None, **kwargs)
Shortcut method to initialize the StaticFeedback object from points.

Initializes a StaticFeedback with the given points, with grade and is_passing_grade inferred from the
points with the help of devilry.apps.core.models.Assignment.points_to_grade()
and devilry.apps.core.models.Assignment.points_is_passing_grade().

Example:

feedback = StaticFeedback.from_points(
assignment=myassignment,
points=10,
delivery=mydelivery,
saved_by=someuser)

assert(feedback.id == None)
assert(feedback.grade != None)

Parameters
• points – The number of points for the feedback.
• assignment – An Assignment object. Should be the assignment where delivery

this feedback is for belongs, but that is not checked.

Defaults to self.delivery.deadline.assignment_group.assignment.

We provide the ability to take the assignment as argument instead of looking
it up via self.delivery.deadline.assignment_group because we
want to to be efficient when creating feedback in bulk.

• kwargs – Extra kwargs for the StaticFeedback constructor.
Returns An (unsaved) StaticFeedback.

save(*args, **kwargs)
Parameters

• autoset_timestamp_to_now – Automatically set the timestamp-attribute of
this model to now? Defaults to True.

• autoupdate_related_models – Automatically update related models:
– Sets the last_feedback-attribute of self.delivery and saved the

delivery.
– Sets the feedback and is_open attributes of
self.delivery.deadline.assignment_group to this feed-
back, and False. Saves the AssignmentGroup.

Defaults to True.

copy(newdelivery)
Copy this StaticFeedback into newdeadline.

Note: This only copies the StaticFeedback, not any data related to it via any grade editors.

Warning: This does not autoset the feedback as active on the group or as latest on the delivery. You
need to handle that yourself after the copy.

64 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

FileMeta

class devilry.apps.core.models.FileMeta(*args, **kwargs)
Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin,
devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer,
devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

Represents the metadata for a file belonging to a Delivery.

A file meta is just information about a single file, which is stored in a deliverystore. Use the
deliverystore to manage the file stored in its physical location. Example:

filemeta = FileMeta.objects.get(pk=0)
if filemeta.deliverystore.exists(filemeta):

filemeta.deliverystore.remove(filemeta)

Write or read just as with the builtin open()
fobj = filemeta.deliverystore.write_open(filemeta)
fobj.write(’Hello’)
fobj.write(’World’)
fobj.close()
fobj = filemeta.deliverystore.read_open(filemeta)
print fobj.read()

See DeliveryStore for more details on deliverystores.

delivery

A django.db.models.ForeignKey that points to the Delivery of the given feedback.

filename
Name of the file.

size
Size of the file in bytes.

deliverystore
The current DeliveryStore. Class variable.

get_all_data_as_string()
Get all data store in the deliverystore for this FileMeta as a string. THIS IS ONLY FOR TESTING, and
should NEVER be used for production code, since it will eat all memory on the server for huge files.

copy(newdelivery)
Copy this filemeta into newdelivery. Copies the database object and the data in the deliverystore.

DevilryUserProfile

See also: The Devilry User object.

class devilry.apps.core.models.DevilryUserProfile(*args, **kwargs)
Bases: django.db.models.base.Model

User profile with a one-to-one relation to django.contrib.auth.models.User.

Ment to be used as a Django user profile (AUTH_PROFILE_MODULE).

full_name
Django splits names into first_name and last_name. They are only 30 chars each. Read about why this is
not a good idea here:

1.3. Devilry developer documentation 65

http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey

Devilry Documentation, Release 2.0.20-

http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
Since we require support for any name, we use our own full_name field, and ignore the one in Django.
Max length 300.

languagecode
Used to store the preferred language for a user. Not required (The UI defaults to the default language)

get_displayname()
Get a name for this user, preferrably the full name, but falls back to username of that is unavailable.

The Devilry User object

Django user

Devilry users are Django django.contrib.auth.models.User objects. However we only use a subset of the fields:

• username

• email

• is_superuser

• password (if authenticating using the default Django auth)

Additional data

Additional data is stored in a one-to-one relation to devilry.apps.core.models.DevilryUserProfile.
The profile object is available through the devilryuserprofile attribute of any django.contrib.auth.models.User
object in devilry. It can be used in queries just like any other one-to-one relation, like this:

from django.contrib.auth.models import User
supermen = User.objects.filter(devilryuserprofile__full_name__contains="Superman")

devilry.apps.core.deliverystore — DeliveryStore

A DeliveryStore is a place to put the files from deliveries. In more technical terms, it is a place where each file related
to a devilry.apps.core.models.FileMeta is stored.

Selecting a DeliveryStore

Devilry on comes with one DeliveryStore ready for production use, FsDeliveryStore. To enable a DeliveryStore,
you have to set the DELIVERY_STORE_BACKEND-setting in your settings.py like this:

DELIVERY_STORE_BACKEND = ’devilry.apps.core.deliverystore.FsDeliveryStore’

The FsDeliveryStore also require you to define where on the disk you wish to store your files in the
DELIVERY_STORE_ROOT-setting like this:

DELIVERY_STORE_ROOT = ’/path/to/root/directory/of/my/deliverystore’

66 Chapter 1. Table of contents

http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
http://docs.djangoproject.com/en/dev/topics/auth/#users
http://docs.djangoproject.com/en/dev/topics/auth/#users

Devilry Documentation, Release 2.0.20-

Creating your own DeliveryStore

To create your own DeliveryStore you have to implement DeliveryStoreInterface. A good example is
FsDeliveryStore:

class FsDeliveryStore(DeliveryStoreInterface):
"""
Filesystem-based DeliveryStore suitable for production use.

It stores files in a filesystem hierarcy with one directory for each
Delivery, with the delivery-id as name. In each delivery-directory, the
files are stored by FileMeta id.
"""
def __init__(self, root=None):

"""
:param root: The root-directory where files are stored. Defaults to the value of the ‘‘DELIVERY_STORE_ROOT‘‘-setting.
"""
self.root = root or settings.DELIVERY_STORE_ROOT

def _get_dirpath(self, delivery_obj):
return join(self.root, str(delivery_obj.pk))

def _get_filepath(self, filemeta_obj):
return join(self._get_dirpath(filemeta_obj.delivery),

str(filemeta_obj.pk))

def read_open(self, filemeta_obj):
filepath = self._get_filepath(filemeta_obj)
if not exists(filepath):

raise FileNotFoundError(filemeta_obj)
return open(filepath, ’rb’)

def _create_dir(self, filemeta_obj):
dirpath = self._get_dirpath(filemeta_obj.delivery)
if not exists(dirpath):

makedirs(dirpath)

def write_open(self, filemeta_obj):
self._create_dir(filemeta_obj)
return open(self._get_filepath(filemeta_obj), ’wb’)

def remove(self, filemeta_obj):
filepath = self._get_filepath(filemeta_obj)
if not exists(filepath):

raise FileNotFoundError(filemeta_obj)
remove(filepath)

def exists(self, filemeta_obj):
filepath = self._get_filepath(filemeta_obj)
return exists(filepath)

def copy(self, filemeta_obj_from, filemeta_obj_to):
frompath = self._get_filepath(filemeta_obj_from)
topath = self._get_filepath(filemeta_obj_to)
self._create_dir(filemeta_obj_to)
shutil_copy(frompath, topath)

1.3. Devilry developer documentation 67

Devilry Documentation, Release 2.0.20-

Testing your own DeliveryStore We provide a mixing-class, devilry.apps.core.testhelpers.DeliveryStoreTestMixin,
for you to extend when writing unit-tests for your DeliveryStore. Here is how we test FsDeliveryStore:

class TestFsDeliveryStore(DeliveryStoreTestMixin, TestCase):
def setUp(self):

self.root = mkdtemp()
super(TestFsDeliveryStore, self).setUp()

def get_storageobj(self):
return FsDeliveryStore(self.root)

def tearDown(self):
rmtree(self.root)

class devilry.apps.core.testhelpers.DeliveryStoreTestMixin
Bases: devilry.apps.core.testhelper.TestHelper

Mixin-class that tests if devilry.core.deliverystore.DeliveryStoreInterface is imple-
mented correctly.

You only need to override get_storageobj(), and maybe setUp() and tearDown(), but make sure
you call super(..., self).setUp() if you override it.

You must mixin this class before django.test.TestCase like so:

class TestMyDeliveryStore(DeliveryStoreTestMixin, django.test.TestCase):
...

get_storageobj()
Return a object implementing devilry.core.deliverystore.DeliveryStoreInterface

setUp()
Make sure to call this if you override it in subclasses, or the tests will fail.

Setting the DeliveryStore manually - for tests

You might need to set the DeliveryStore manually if you need to handle deliveries in your own tests. Just set
devilry.apps.core.FileMeta.deliveryStore like this:

from django.test import TestCase
from devilry.apps.core.models import FileMeta, Delivery
from devilry.apps.core.deliverystore import MemoryDeliveryStore

class MyTest(TestCase):
def test_something(self):

FileMeta.deliverystore = MemoryDeliveryStore()
delivery = Delivery.begin(assignmentgroup, user)
delivery.add_file(’hello.txt’, [’hello’, ’world’])
delivery.finish()

The recommended production deliverystore

The recommended DeliveryStore is devilry.apps.core.deliverystore.FsHierDeliveryStore.

It stores files in a filesystem hierarcy with one directory for each Delivery, with the delivery-id as name. In each
delivery-directory, the files are stored by FileMeta id.

68 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Directory hierachy The delivery directories are stored in a hierarchy with two parent directories. The parent direc-
tories are numeric intervals. We have one top-level directory for each N in interval_size*interval_size*N.
Within each toplevel directory, we have one subdirectory for each N in interval_size*N.

Directory hierarchy example For interval_size of 1000, this will use the following hierarchy:

0/
0/

0/
1/
.
.

1/
1000/
2000/
.
.

2/
.
.
999/

1/
0/

1000000/
1000001/
.
.

1/
1001000/
1001001/

2/
.
.
999/

2/
.
.
999/

API

exception devilry.apps.core.deliverystore.FileNotFoundError(filemeta_obj)
Bases: exceptions.Exception

Exception to be raised when the remove method of a DeliveryStore does not find the given file.

class devilry.apps.core.deliverystore.DeliveryStoreInterface
Bases: object

The interface all deliverystores must implement. All methods raise NotImplementedError.

read_open(filemeta_obj)
Return a file-like object opened for reading.

The returned object must have close() and read() methods as defined by the documentation of the
standard python file-class.

Parameters filemeta_obj – A devilry.core.models.FileMeta-object.

1.3. Devilry developer documentation 69

Devilry Documentation, Release 2.0.20-

write_open(filemeta_obj)
Return a file-like object opened for writing.

The returned object must have close() and write() methods as defined by the documentation of the
standard python file-class.

Parameters filemeta_obj – A devilry.core.models.FileMeta-object.

remove(filemeta_obj)
Remove the file.

Note that this method is called before the filemeta_obj is removed. This means that the file might be
removed, and the removal of the filemeta_obj can still fail. To prevent users from having to manually
resolve such cases implementations should check if the file exists, and raise FileNotFoundError if it does
not.

The calling function has to check for FileNotFoundError and handle any other error.
Parameters filemeta_obj – A devilry.core.models.FileMeta-object.

exists(filemeta_obj)
Return True if the file exists, False if not.

Parameters filemeta_obj – A devilry.core.models.FileMeta-object.

copy(filemeta_obj_from, filemeta_obj_to)
Copy the underlying file-object for filemeta_obj_from into the file-object for
filemeta_obj_to.

Defaults to an inefficient implementation using read_open() and meth:.write_open. Should be over-
ridden for backends with some form of native copy-capability.

class devilry.apps.core.deliverystore.FsDeliveryStore(root=None)
Bases: devilry.apps.core.deliverystore.DeliveryStoreInterface

Filesystem-based DeliveryStore suitable for production use.

It stores files in a filesystem hierarcy with one directory for each Delivery, with the delivery-id as name. In each
delivery-directory, the files are stored by FileMeta id.

Parameters root – The root-directory where files are stored. Defaults to the value of the
DELIVERY_STORE_ROOT-setting.

class devilry.apps.core.deliverystore.FsHierDeliveryStore(root=None, inter-
val=None)

Bases: devilry.apps.core.deliverystore.FsDeliveryStore

Filesystem-based DeliveryStore suitable for production use with huge amounts of deliveries.
Parameters

• root – The root-directory where files are stored. Defaults to the value of the
DEVILRY_FSHIERDELIVERYSTORE_ROOT-setting.

• interval – The interval. Defaults to the value of the
DEVILRY_FSHIERDELIVERYSTORE_INTERVAL-setting.

get_path_from_deliveryid(deliveryid)

>>> fs = FsHierDeliveryStore(’/stuff/’, interval=1000)
>>> fs.get_path_from_deliveryid(deliveryid=2001000)
(2, 1)
>>> fs.get_path_from_deliveryid(deliveryid=1000)
(0, 1)
>>> fs.get_path_from_deliveryid(deliveryid=1005)
(0, 1)
>>> fs.get_path_from_deliveryid(deliveryid=2005)
(0, 2)

70 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

>>> fs.get_path_from_deliveryid(deliveryid=0)
(0, 0)
>>> fs.get_path_from_deliveryid(deliveryid=1)
(0, 0)
>>> fs.get_path_from_deliveryid(deliveryid=1000000)
(1, 0)

class devilry.apps.core.deliverystore.MemoryDeliveryStore
Bases: devilry.apps.core.deliverystore.DeliveryStoreInterface

Memory-base DeliveryStore ONLY FOR TESTING.

This is only for testing, and it does not handle parallel access. Suitable for unittesting.

devilry.utils — Various utility functions

devilry.utils.assignmentgroup

class devilry.utils.assignmentgroup.GroupDeliveriesByDeadline(group)
Deliveries on an assignmentgroup is returned in a list of tuples, where each tuple contains the deadline, and all
the deliveries on that deadline. If the default deadline (head) contains no deliveries, it is ignored.

devilry.utils.ordereddict

class devilry.utils.OrderedDict
If python version >=2.7, collections.OrderedDict is imported. For older python versions, the fallback mentioned
in the OrderedDict docs is imported.

devilry.utils.delivery_collection

class devilry.utils.delivery_collection.ArchiveException
Bases: exceptions.Exception

Archive exceptions

devilry.utils.delivery_collection.create_archive_from_assignmentgroups(request,
as-
sign-
ment-
groups,
file_name,
archive_type)

Creates an archive of type archive_type, named file_name, containing all the deliveries in each of the assign-
mentgroups in the list assignmentgroups.

devilry.utils.delivery_collection.create_archive_from_delivery(request,
delivery,
archive_type)

Creates an archive of type archive_type, named assignment.get_path(), containing all files in the delivery.

devilry.utils.delivery_collection.iter_archive_deliveries(archive, group_name,
directory_prefix, deliv-
eries)

Adds files one by one from the list of deliveries into the archive. After writing each file to the archive, the
new bytes in the archive is yielded. If a file is bigger than DEVILRY_MAX_ARCHIVE_CHUNK_SIZE, only

1.3. Devilry developer documentation 71

http://docs.python.org/dev/library/collections.html#ordereddict-objects

Devilry Documentation, Release 2.0.20-

DEVILRY_MAX_ARCHIVE_CHUNK_SIZE bytes are written before it’s yielded. The returned object is an
iterator.

devilry.utils.delivery_collection.iter_archive_assignmentgroups(archive,
assignment-
groups)

Creates an archive, adds files delivered by the assignmentgroups and yields the data.

devilry.utils.delivery_collection.verify_groups_not_exceeding_max_file_size(assignmentgroups)
For each assignmentgroups in groups, calls verify_deliveries_not_exceeding_max_file_size().
If the size of a file in a delivery exceeds the settings.DEVILRY_MAX_ARCHIVE_CHUNK_SIZE, an Archive-
Exception is raised.

devilry.utils.delivery_collection.verify_deliveries_not_exceeding_max_file_size(deliveries)
Goes through all the files in each deliverery, and if the size of a file exceeds the DEV-
ILRY_MAX_ARCHIVE_CHUNK_SIZE, an ArchiveException is raised.

devilry.utils.groupnodes

class devilry.utils.GroupNode
The node object containing a node, and GroupNode children.

group_assignmentgroups(assignment_group_list)
Creates a tree where each assignmentgroup is represented as a GroupNode. assignmentgroups with the same
parent (period) are grouped together.

group_assignments(assignment_list)
Creates a tree where each assignment is represented as a GroupNode. assignments with the same parent (period)
are grouped together.

group_nodes(node_list, tree_height)
Creates a tree where each node is represented as a GroupNode. nodes with the same parent (period) are grouped
together.

devilry.utils.devilry_email

exception NoEmailAddressException
Raised when email adress is missing on users.

send_email(user_objects_to_send_to, subject, message)
Send email to the list of users in user_objects_to_send_to

send_email_admins(subject, message, fail_silently=False)
Send email to admins registered in settings.ADMINS.

devilry.utils.groups_groupedby_relatedstudent_and_assignment

Provides an easy-to-use API for generating overviews over the results of all students in a period. Collects students that
are not related as well as related.

Example Create CSV with the grades of all students on the period, including those ignored because they are not
related:

72 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

grouper = GroupsGroupedByRelatedStudentAndAssignment(myperiod)

header = [’USER’,’IGNORED’]
for assignment in grouper.iter_assignments():

header.append(assignment.short_name)
print ’;’.join(header)

def print_aggregated_relstudentinfo(aggregated_relstudentinfo, ignored):
user = aggregated_relstudentinfo.user
row = [user.username, ignored]
for grouplist in aggregated_relstudentinfo.iter_groups_by_assignment():

NOTE: There can be more than one group if the same student is in more than one
group on an assignment - we select the "best" feedback.
feedback = grouplist.get_feedback_with_most_points()
if feedback:

row.append(feedback.grade)
else:

row.append(’NO-FEEDBACK’)
print ’;’.join(row)

Print all related students
for aggregated_relstudentinfo in grouper.iter_relatedstudents_with_results():

print_aggregated_relstudentinfo(aggregated_relstudentinfo, ’NO’)

Last we print the ignored students (non-related students that are in a group)
for aggregated_relstudentinfo in grouper.iter_students_with_feedback_that_is_candidate_but_not_in_related():

print_aggregated_relstudentinfo(aggregated_relstudentinfo, ’YES’)

API
class devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupList

Bases: list

Represents a list of devilry.apps.core.models.AssignmentGroup objects, with utility functions
for commonly needed actions. The list is ment to hold groups where the same student in candidate on a single
assignment, and the utilities is ment to make it easier to work with the added complexity of supporting the same
user in multiple groups on a single assignment.

get_feedback_with_most_points()
Get the devilry.apps.core.models.StaticFeedback with the most points in the list.

get_best_gradestring()
Uses get_feedback_with_most_points() to get the feedback with most points, and returns the
grade-attribute of that feedaback.

Returns The grade or None.
class devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo(user,

as-
sign-
ments,
re-
lat-
ed-
stu-
dent=None)

Bases: object

Used by GroupsGroupedByRelatedStudentAndAssignment to stores all results for a single student
on a period.

1.3. Devilry developer documentation 73

Devilry Documentation, Release 2.0.20-

user = None
The Django user object for the student.

assignments = None
Dict of assignments where the key is the assignment-id, and the value is a GroupList.

relatedstudent = None
The devilry.apps.core.models.RelatedStudent for users that
are related students. This is only available for the objects returned by
GroupsGroupedByRelatedStudentAndAssignment.iter_relatedstudents_with_results(),
and not for the objects returned by the ignored students iterators.

iter_groups_by_assignment()
Returns an iterator over all GroupList objects for this student. Shortcut for
self.assignments.itervalues().

add_group(group)
Used by GroupsGroupedByRelatedStudentAndAssignment to add groups.

prettyprint()
Prettyprint for debugging.

class devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment(period)
Bases: object

Provides an easy-to-use API for overviews over the results of all students in a period.
Parameters period – A devilry.apps.core.models.Period object.

get_assignment_queryset()
Get the queryset used to fetch all assignments on the period. Override for custom ordering or if you need
to optimize the query for your usecase (select_related, prefetch_related, etc.)

get_relatedstudents_queryset()
Get the queryset used to fetch all relatedstudents on the period. Override if you need to optimize the query
for your usecase (select_related, prefetch_related, etc.)

get_groups_queryset()
Get the queryset used to fetch all groups on the period. Override if you need to optimize the query for
your usecase (select_related, prefetch_related, etc.)

iter_assignments()
Iterate over all the assignments, yielding Assignment-objects. The objects are iterated in the order returned
by get_assignment_queryset().

iter_relatedstudents_with_results()
Iterate over all relatedstudents, yielding a dict with the following attributes for each related student:

user The Django user-object for the student.
assignments An OrderedDict, ordered the same as iter_assignments(), where the

key is the assignment-id, and the value is a list of AssignmentGroup-objects where
the user is candidate. The list may have 0 or more groups, 0 if the user is not in any
group on the assignment, and more than 1 if the user is in more than one group on the
assignment.

iter_students_that_is_candidate_but_not_in_related()
Iterate over the students that is candidate on one or more groups, but not registered as related students.

This iterator includes everything yielded by both:
•iter_students_with_feedback_that_is_candidate_but_not_in_related()
•iter_students_with_no_feedback_that_is_candidate_but_not_in_related()

74 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

iter_students_with_feedback_that_is_candidate_but_not_in_related()
Same as iter_students_that_is_candidate_but_not_in_related(), but it does not in-
clude the students that have no feedback.

iter_students_with_no_feedback_that_is_candidate_but_not_in_related()
Iterate over everything returned by iter_students_that_is_candidate_but_not_in_related()
except for the students returned by iter_students_with_feedback_that_is_candidate_but_not_in_related()

serialize()
Serialize all the collected data as plain python objects.

There are more utils than the ones listed above. Read the source. The most useful is probably:

• devilry.utils.passed_in_previous_period — Find students that passed the course in previous
periods/semesters.

Advanced topics

Most developers will not need to bother with these topics.

Developing and testing Celery background tasks

How Celery is configured

Celery is configured according to the Celery first steps with Django guide. The app
is in devilry.project.common.celery, and it is imported as celery_app in
devilry/project/common/__init__.py.

For production, we leave the configuration up to sysadmins.

For development, we default to running Celery in eager mode, but we have commented out settings in
devilry.project.develop.develop for “real” Celery testing. Eager mode means that all celery tasks runs
in blocking mode in the current thread, so celery tasks runs just like any other function.

For unit tests, we run Celery in eager mode (configured in devilry.project.develop.test).

Testing with non-eager Celery

Install Redis See https://redis.io/. On Mac OSX, you can install Redis using Homebrew:

$ brew install redis

Start the Redis server To start the redis server, run:

$ redis-server

To stop the server, run:

$ redis-server stop

To stop the server on OSX, run:

$ redis-cli shutdown

1.3. Devilry developer documentation 75

http://celery.readthedocs.org/
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://redis.io/

Devilry Documentation, Release 2.0.20-

Start the Celery worker Run:

$ celery -A devilry.project.common worker -l debug

It should print some info about the config, the tasks that it detects in Devilry, and stop for input with the following
message: celery@<your machine name> is ready.

Try one of the test-tasks Open the Django shell, and run one the test-tasks (while Redis and the Celery worker are
both running):

$ python manage.py shell
>>> from devilry.project.develop.tasks import add
>>> result = add.delay(10, 20)
>>> result.wait()
30

If this works, Celery is configured correctly, and you should be able to see the job in the terminal where the worker is
running.

Things to remember (when running Celery tasks through the Celery worker)

• The output (stdout and stderr) goes to the Celery worker, not to runserver.

• You can get more verbose output from the worker with worker -l debug.

Testing email sending with django-celery-email Uncomment the following lines in
devilry.project.develop.settings.develop:

INSTALLED_APPS += [’djcelery_email’]
EMAIL_BACKEND = ’djcelery_email.backends.CeleryEmailBackend’
CELERY_EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"

And run the following in the Django shell:

>>> from django.contrib.auth import get_user_model
>>> from devilry.utils.devilry_email import send_message
>>> send_message(’Testsubject’, ’Testmessage’, get_user_model().objects.get(username=’april’))

How to write a plugin

Warning: Plugins will be phased out in 2.1.0 when we update to Django 1.7.

A plugin is basically just a normal Django application. The only thing making it a pugin is that it integrates itself into
the Devilry system in some way.

Setting up your testsite

In this howto we assume you have created a django site, mysite/, and and that your plugin is a application in this
site called myplugin. It should look something like this:

76 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

mysite/
settings.py
manage.py
urls.py
myplugin/

models.py
urls.py

Autoload plugins

There are several ways a plugin can integrate itself, but they all need some place to do the integration. Just like
admin.py can be used to integrate your application with the Django admin interface, devilry provides a place where
you can put code that you want to autoload.

First initialize the plugin system by adding:

from devilry.apps.core import pluginloader
pluginloader.autodiscover()

to your mysite/urls.py, making it look something like this:

from django.conf.urls import *

Uncomment the next two lines to enable the admin:
#from django.contrib import admin
#admin.autodiscover()

from devilry.apps.core import pluginloader
pluginloader.autodiscover()

urlpatterns = patterns(’’,
Example:
(r’^mysite/’, include(’mysite.foo.urls’)),

Uncomment the admin/doc line below and add ’django.contrib.admindocs’
to INSTALLED_APPS to enable admin documentation:
(r’^admin/doc/’, include(’django.contrib.admindocs.urls’)),

Uncomment the next line to enable the admin:
(r’^admin/’, include(admin.site.urls)),

)

pluginloader.autodiscover() will autoload any module named devilry_plugin in any application in
INSTALLED_APPS.

Your first plugin

Create a file named mysite/myplugin/devilry_plugin.py, and put the following code into the file:

print
print "Hello plugin world!"
print

1.3. Devilry developer documentation 77

Devilry Documentation, Release 2.0.20-

Start the development server with python manage.py runserver, go to http://localhost:8000/ and you should
see the message you printed in the terminal/shell running the server.

Plugin errors

pluginloader.autodiscover() will fail if you have any errors in your devilry_plugin-module. It will
not auto-reload failed modules before you restart the server.

Devilry localization/internationalization/translation

Devilry uses the Django localization platform/system. This means that:

• Our translations are in the gettext .po format.

• We mark translation strings in Python code, templates and in JavaScript.

For the actual translation process, we use transifex.com.

Warning: Pushing files to Transifex requires you to be part of the Devilry core developer team.
If you are a normal developer and not responsible for managing translations, you just need to make sure to mark
all trings for translation as described in the Django docs.
If you are a translator, you only need to ask for permission to the translation catalogs for you languages in our
Transifex project, and none of the information in these docs should concern you.

How we organize the translations

All translations are added to devilry/locale/. We do not add translation per app for the following reasons:

• There are lots of overlapping translation strings.

• Easier to upload and maintain a single translation catalog on Transifex.

Configure Transifex

Before you can start pushing and pulling translation files to/from Transifex, you will need to create a
~/.transifexrc. It should look like this:

[https://www.transifex.com]
hostname = https://www.transifex.com
username = myuser
password = supersecret
token =

More information here: http://docs.transifex.com/developer/client/config.

Translation process

We translate using Transifex. This means that the workflow is:

1. Mark new translations or change existing translations.

2. Build the translation files (.po files).

3. Push translation files (.po files) to Transifex.

78 Chapter 1. Table of contents

http://localhost:8000/
http://docs.transifex.com/developer/client/config

Devilry Documentation, Release 2.0.20-

4. Wait for translators to translate using Transifex.

5. Pull translation files (.po files) from Transifex.

6. Compile translations and commit the .mo files.

Below we go in detail for each of these steps. All commands assume the following:

$ cd /path/to/reporoot
$ workon devilry-django

Mark new translations or change existing translations Read the Django internationalization docs.

Build the translation files First, make sure you have the latest po-files from transifex:

$ tx pull

We have a fabric task for that:

$ fab makemessages

Commit the changes to the .po-files in devilry/locale/.

Push translation files to Transifex Run:

$ tx push -s -t

to push the .po files to transifex.

Compile translations and commit the .mo files We have a fabric task for compiling the translations:

$ cd /path/to/reporoot
$ workon devilry-django
$ fab compilemessages

This should change some .mo-files in devilry/locale/. Commit those files.

JavaScript — Libraries and guidelines/code style

Most of our UIs are developed in JavaScript using the ExtJS4 framework from Secha (http://sencha.com).

Libraries

At the time of writing, we only use ExtJS4. We are open to including more libraries, but we have not had the need yet.

1.3. Devilry developer documentation 79

http://sencha.com

Devilry Documentation, Release 2.0.20-

Guidelines and code style

Indent 4 spaces

Naming Real meaningful names like:

var age = 10;
var username_to_name_map = {peterpan: ’Peter’, wendy: ’Wendy’};

NOT:

var a = 10;
var u = {peterpan: ’Peter’, wendy: ’Wendy’};
var usrmap = {peterpan: ’Peter’, wendy: ’Wendy’};

Private methods and functions Same format as semi-private python methods/functions (prefix by _):

_my_private_method: function() {
return null;

}

Code format Should pass without any errors from JSHint (see JSHint).

Code layout The ExtJS app layout. See the devilry_subjectadmin app and the ExtJS4 docs.

Documentation Use the JSDuck format (https://github.com/senchalabs/jsduck). Note that you do not have to docu-
ment every single function, but you should at least document:

• Functions, methods and variables used outside its context (I.E.: you do not have to document view-
functions that is only used by its controller, but you have to document it of multiple controllers use it).

• Properties and config parameters for ExtJS classes.

• Events for ExtJS classes, especially if they are used outside their controller.

File naming Name controllers by what the control (E.g: controller/period/PeriodController.js),
and the views after their purpose (E.g.: view/period/PeriodOverview.js). Try to use unique names
instead of generic names like Overview.js. To see why, try to find (quick open) a file with tens of matches
in an IDE like PyCharm or Eclipse that only search for file names, not for folder names (hint: it is not quick
to open such files). We learned this when developing devilry_subjectadmin with controllers and views
named Overview.js.

JSHint

For info about JSHint, see http://www.jshint.com/.

Install Install NodeJS and Node Package Manager (part of NodeJS):

• Ubuntu: sudo apt-get install nodejs npm

• OSX with homebrew: brew install npm

• Others, see: http://nodejs.org/

Install JSHint in /usr/local on most nix systems, like Linux and OSX:

$ sudo npm install jshint -g

80 Chapter 1. Table of contents

https://github.com/senchalabs/jsduck
http://www.jshint.com/
http://nodejs.org/

Devilry Documentation, Release 2.0.20-

Usage Simply point JSHint at a directory:

$ jshint src/devilry_subjectadmin/devilry_subjectadmin/static/devilry_subjectadmin/app/

The defaults are sane (unlike JSLint), so you should not need to supply any options.

Building the ExtJS javascript apps

Note: This is only needed if you have made changes to javascript sources, or if you are making your own ExtJS app.

Building We use webpack for building javascript. Go into the static directory of the app, where pack-
age.json and webpack.develop.js is, and run npm run jsbuild to build for development, and npm run
jsbuild-production to build for production. If this is the first time you build javascript for the app, you must
run npm install first.

Example:

$ cd devilry/devilry_subjectadmin/static/devilry_subjectadmin
$ npm install
$ npm run jsbuild

During development, you should use:

$ npm run jsbuild-watch

When the code is stable, you should build for production with:

$ npm run jsbuild-production

and commit the changes to production.js and production.js.map

Testing a production build Change the EXTJS4_DEBUG setting to False in
devilry/project/develop/settings/develop.py. This should make all the javascript views
serve production.js instead of debug.js.

Update old sencha tools app to build with Webpack

Run the following management command:

$ python manage.py make_require_statements_from_jsb3 <appname> devilry/<appname>/static/<appname>/app.jsb3
$... E.g.: ...
$ python manage.py make_require_statements_from_jsb3 devilry_nodeadmin devilry/devilry_nodeadmin/static/devilry_nodeadmin/app.jsb3

This will create an entry.js file with require statements for all the required files extracted from the app.jsb3
file.

Copy the webpack.develop.config.js and webpack.production.config.js
files from devilry/devilry_nodeadmin/static/devilry_nodeadmin into the
app. Update the package.json file to contain the weback requirements and scripts from
devilry/devilry_nodeadmin/static/devilry_nodeadmin/package.json

1.3. Devilry developer documentation 81

Devilry Documentation, Release 2.0.20-

You should now be able to follow the building guide above. You should now run both npm run jsbuild
and npm run jsbuild-production, and commit the generated debug.js, production.js and
production.js.map.

The last thing you need to do is to make the view that serves the javascript to inherit from
devilry.devilry_extjsextras.views.DevilryExtjs4AppView instead of from Extjs4AppView.
You should not need to make any other changes, just switch the superclass of the view.

If the javascript builds, and you have changed the superclass of the view, you should now be able to test the code in
your browser. Make sure to check the network tab in chrome developer tools to ensure that the view serves:

• debug.js instead of app.js with the EXTJS4_DEBUG setting set to True.

• production.js‘ instead of ‘‘app-all.js with the EXTJS4_DEBUG setting set to False.

When you have verified that both development and production builds work, you can remove:

• app-all.js

• app.jsb3

• all-classes.js

(they are all replaced by webpack + entry.js).

Apps

devilry_subjectadmin — Subject administrator GUI

About the app

The subjectadmin app provides a GUI for administrators on Subject, Period and Assignment, including a dashboard.

JavaScript

The application is mostly written in JavaScript as an ExtJS app.

devilry_qualifiesforexam

Database models, APIs and UI for qualifying students for final exams.

UI workflow

How users are qualified for final exam i plugin-based. The subject/period admin is taken through a wizard with the
following steps/pages:

1. If no configuration exists for the period: List the title and description of each plugin (see Plugins be-
low), and let the user select the plugin they want to use. The selection is stored in
QualifiesForFinalExamPeriodStatus.plugin.

If a configuration exists for the period: Show the overview of the semester (basically the same as the preview
described as page 3 below). Includes a button to change the configuration. Clicking this button will show
the list of plugins, just like when no configuration exists, with the previously used plugin selected. The
change-button is only available on active periods.

82 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

2. Completely controlled by the plugin. May be more than one page if that should be needed by the plugin. The
plugin can also just redirect directly to the next page if it does not require any input from the user. We supply a
box with save and back buttons that should be the same for all plugins.

3. Preview the results with the option to save or go back to the previous page.

Plugins

A plugin is a regular Django app. Your best source for a simple example is the
devilry_qualifiesforexam_approved-module which contains two plugins. You will find the pack-
age in the src/-directory of the devilry repository.

The role of the plugin A plugin is basically one or more Django views that, for the qualifies-for-exam system, acts
like a black box with the following input and output:

• The input is a dict store by the qualifies-for-exam system in the users session (request.session):

periodid The ID of the class:devilry.apps.core.models.Period.

pluginsessionid An ID that is generated by the qualifies-for-exam system. It is used to
ensure that we do not get session key collisions when using the wizard from multiple browser
windows at the same time.

• The output is a devilry_qualifiesforexam.pluginhelpers.PreviewData-object stored in the
users session (request.session) under the qualifiesforexam-<pluginsessionid> key. The
output object is used by the REST-api that generates the preview-data.

Registering an app as a qualifiesforexam plugin Add something like the following to
yourapp/devilry_plugin.py:

from devilry_qualifiesforexam.registry import qualifiesforexam_plugins
from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _

qualifiesforexam_plugins.add(
id=’myapp’,
url=reverse(’myapp-myplugin’), # The url of the view to use for step/page 2 in the workflow - the input parameters (see above) is added to this url.
title=_(’My plugin’),
description=_(’Does this and that.’)

)

Create the view See Plugin helpers and take a look at the sourcecode for
devilry_qualifiesforexam_approved (in the src/ directory of the Devilry sources).

Configure available plugins Available plugins are configured in settings.DEVILRY_QUALIFIESFOREXAM_PLUGINS,
which is a list of plugin ids. Note that the apps containing the plugin must also be in settings.INSTALLED_APPS,
and the urls must be registered. The plugins are shown in listed order on page 1 of the wizard described in the UI
workflow.

Note: You can safely remove plugins from settings.DEVILRY_QUALIFIESFOREXAM_PLUGINS. They will
simply not be available in the list of plugins in the UI workflow.

1.3. Devilry developer documentation 83

Devilry Documentation, Release 2.0.20-

Write tests If you want your plugin to be considered for inclusion in Devilry you will
have to write good tests. These plugins handle very sensitive data, so it would be mad-
ness to deploy them in production without proper tests. We provide a helper-mixin for tests,
devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin, which
you should use. See the tests-module in devilry_qualifiesforexam_approved for examples.

Plugin helpers

The mixin classes QualifiesForExamPluginViewMixin is a mixin class that simplifies the common tasks
for all plugin views (getting input and setting output).

Basic usage Basic usage of the class turns the input and output steps described in The role of the plugin into two
methods: get_plugin_input_and_authenticate(), save_plugin_output(). Those two methods
greatly simplify writing plugins. For example, we can create a view like this:

from django.views.generic import View
class MyPluginView(View, QualifiesForExamPluginViewMixin):

def post(self, request):
try:

self.get_plugin_input_and_authenticate()
except PermissionDenied:

return HttpResponseForbidden()
Your code to detect passing students
passing_relatedstudentsids = [1,2,3]
self.save_plugin_output(passing_relatedstudentsids)
return HttpResponseRedirect(self.get_preview_url())

A more complete example The example above is very simple. You will usually have to iterate over all the students
in a period to find out who qualifies:

from django.views.generic import View
from devilry_qualifiesforexam.pluginhelpers import PeriodResultsCollector
from devilry_qualifiesforexam.pluginhelpers import QualifiesForExamPluginViewMixin

class MyPeriodResultsCollector(PeriodResultsCollector):
def student_qualifies_for_exam(self, aggregated_relstudentinfo):

Test if the student in the AggreatedRelatedStudentInfo qualifies.
Typically something like this (all students must pass all assignments):
for assignmentid, grouplist in aggregated_relstudentinfo.assignments.iteritems():

feedback = grouplist.get_feedback_with_most_points()
if not feedback or not feedback.is_passing_grade:

return False
return True

class MyPluginView(View, QualifiesForExamPluginViewMixin):
def post(self, request):

try:
self.get_plugin_input_and_authenticate()

except PermissionDenied:
return HttpResponseForbidden()

Your code to detect passing students
passing_relatedstudentsids = MyPeriodResultsCollector().get_relatedstudents_that_qualify_for_exam()
self.save_plugin_output(passing_relatedstudentsids)
return HttpResponseRedirect(self.get_preview_url())

84 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

class devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin

periodid
The ID of the period — set by get_plugin_input().

period
The period object loaded using the django.shortcuts.get_object_or_404() — set by
get_plugin_input().

pluginsessionid
The pluginsessionid described in The role of the plugin — set by get_plugin_input().

get_plugin_input_and_authenticate()
Reads the parameters (periodid and pluginsessionid) from the querystring and store them as in the follow-
ing instance variables: periodid, period, pluginsessionid.

Raise django.core.exceptions.PermissionDenied if the request user is not
administrator on the period.

save_plugin_output(*args, **kwargs)
Shortcut that saves a PreviewData in the session key generated using create_sessionkey().
Args and kwargs are forwarded to PreviewData.

save_settings_in_session(settings)
Save settings in the session. You get this back as an argument to your post_statussave-handler if
your plugin is configured with uses_settings=True.

get_preview_url()
Get the preview URL - the URL you must redirect to after saving the output
(save_plugin_output()) to proceed to the preview.

get_selectplugin_url()
Get the preview URL - the URL you should navigate to when users select Back from your plugin view.

redirect_to_preview_url()
Returns a HttpResponseRedirect that redirects to get_preview_url().

Helper for unit tests
class devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin

Mixin-class for test-cases for plugin-views (the views that typically inherit from
QualifiesForExamPluginViewMixin). This class has a couple of helpers that simplifies writing
tests, and some unimplemented methods that ensure you do not forget to write permission tests.

Note: If you use this class as base for your tests, your chances of getting a plugin approved for inclusion as
part of Devilry is greatly increased. You have to include at least one test in addition to the unimplemented tests,
a test that uses a realistic dataset to make sure your plugin behaves as intended (E.g.: Approves/disapproves the
expected students). You may need more than one extra test if your plugin is complex.

testhelper
A devilry.apps.core.testhelper.TestHelper-object which is required for
create_feedbacks() and create_relatedstudent() to work.

Typcally created with something like this in setUp:

from django.test import TestCase
from devilry.apps.core.testhelper import TestHelper

class TestMyPluginView(TestCase, QualifiesForExamPluginTestMixin):

1.3. Devilry developer documentation 85

Devilry Documentation, Release 2.0.20-

def setUp(self):
self.testhelper = TestHelper()

Create:
- the uni-node with ‘‘uniadmin‘‘ as admin
- the uni.sub.p1 period with ‘‘periodadmin‘‘ as admin.
- the a1 and a2 assignments within ‘‘p1‘‘, with separate groups on each
assignment for student1 and student2, and with examiner1 as examiner.
- a deadline on each group
self.testhelper.add(nodes=’uni:admin(uniadmin)’,

subjects=[’sub’],
periods=[’p1:admin(periodadmin):begins(-3):ends(6)’],
assignments=[’a1’, ’a2’],
assignmentgroups=[

’gstudent1:candidate(student1):examiner(examiner1)’,
’gstudent2:candidate(student2):examiner(examiner1)’],

deadlines=[’d1:ends(10)’]
)

period
The period you use in your tests. Needs to be set in the setUp-method for
create_relatedstudent() to work. Typically defined with the following code after the
core in the example in testhelper:

self.period = self.testhelper.sub_p1

create_relatedstudent(username)
Create and return a related student on the period. A user with the given username is created if it does
not exist.

create_feedbacks(*feedbacks):
Create feedbacks on groups from the given list of feedbacks.

Parameters feedbacks – Each item in the arguments list is a (group, feedback) tu-
ple where group is the devilry.apps.core.models.AssignmentGroup-
object that it to be given feedback, and feedbacks is a dict with attributes for the
devilry.apps.core.models.StaticFeedback with the following keys:

grade See devilry.apps.core.models.StaticFeedback.grade.
points See devilry.apps.core.models.StaticFeedback.points.
is_passing_grade See devilry.apps.core.models.StaticFeedback.is_passing_grade.

A delivery to save the feedback on is created automatically, so all that is needed of the groups is an
examiner, a candidate and a deadline.

Example:

self.create_feedbacks(
(self.testhelper.sub_p1_a1_gstudent2, {’grade’: ’B’, ’points’: 86, ’is_passing_grade’: True}),
(self.testhelper.sub_p1_a2_gstudent2, {’grade’: ’A’, ’points’: 97, ’is_passing_grade’: True})

)

test_perms_as_periodadmin()
Must be implemented in subclasses.

test_perms_as_nodeadmin()
Must be implemented in subclasses.

test_perms_as_superuser
Must be implemented in subclasses.

86 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

test_perms_as_nobody
Must be implemented in subclasses.

test_invalid_period
Must be implemented in subclasses.

Other helpers
class devilry_qualifiesforexam.pluginhelpers.PreviewData(passing_relatedstudentids)

Stores the output from a plugin. You should not need to use this directly. Use
QualifiesForExamPluginViewMixin.save_plugin_output() instead.

Parameters passing_relatedstudentids – See passing_relatedstudentids.
passing_relatedstudentids

List of the IDs of all devilry.apps.core.models.RelatedStudent that qualifies for final
exams according to the plugin that generated the data.

devilry_qualifiesforexam.pluginhelpers.create_sessionkey(pluginsessionid)
Generate the session key for the plugin output as described in The
role of the plugin. You should not need to use this directly. Use
QualifiesForExamPluginViewMixin.get_plugin_input_and_authenticate() instead.

Plugins shipped with Devilry

devilry_qualifiesforexam_approved TODO

Database models

How the models fit together Each time a periodadmin qualifies students for final exams, even when they only
partly qualify their students, a new Status-record is saved in the database. A status has a ForeignKey to
devilry.apps.core.models.Period, so the last saved Status is the active qualified-for-exam status for a
Period.

Each time a Status is saved, all of the devilry.apps.core.models.RelatedStudent‘s for that
period gets a :class:.QualifiesForFinalExam‘-record, which saves the qualifies-for-exam status for the stu-
dent. When a status is almostready, we use NULL in the QualifiesForFinalExam.qualifies-field to
indicate students that are not ready.

Node administrators or systems that intergrate with Devilry uses Status.exported_timestamp to mark
Status-records that have been exported to an external system. It is important to note that we export statuses, not
periods. This means that we can create new statuses, and re-export them. An automatic system can check timestamps
to handle status changes, and the Node admin UI can show/hilight periods with exported statuses and more recent
statuses.

DeadlineTag is used to organize periods by the time when they should have made a ready-Status.

The models
class devilry_qualifiesforexam.models.DeadlineTag

A deadlinetag is used to tag devilry.apps.core.models.Period-objects with a timestamp and an
optional tag describing the timestamp.

timestamp
Database field containing the date and time when a period admin should be finished qualifying students
for final exams.

tag
A tag for node-admins for this deadlinetag. Max 30 chars. May be empty or null.

1.3. Devilry developer documentation 87

Devilry Documentation, Release 2.0.20-

class devilry_qualifiesforexam.models.PeriodTag
This table is used to create a one-to-many relation from DeadlineTag to
devilry.apps.core.models.Period.

deadlinetag
Database foreign key to the DeadlineTag that the Period should be tagged by.

period
Database foreign key to the devilry.apps.core.models.Period that this tag points to.

class devilry_qualifiesforexam.models.Status
Every time the admin updates qualifies-for-exam on a period, we save new object of this database model.

This gives us a history of changes, and it makes it possible for subject/period admins to communicate simple
information to whoever it is that is responsible for handling examinations.

period
Database foreign key to the devilry.apps.core.models.Period that the status is for.

exported_timestamp
Database datetime field that tells when the status was exported out of Devilry to an external system. This
is null if the status has not been expored out of Devilry.

status
Database char field that accepts the following values:

•ready is used to indicate the the entire period is ready for export/use.
•almostready is used to indicate that the period is almost ready for export/use, and that the
exceptions are explained in the message.

•notready is used to indicate that the period has no useful data yet. This is typically only used
when the period used to be ready or almostready, but had to be retracted for a reason explained in
the status

createtime
Database datetime field where we store when we added the status.

message
Database field with an optional message about the status change.

user
Database foreign key to the user that made the status change.

plugin
Database char field that stores the id of the plugin (see Plugins) that was used to change the status.

class devilry_qualifiesforexam.models.QualifiesForFinalExam

relatedstudent
Database one-to-one relation to devilry.apps.core.models.RelatedStudent.

qualifies
Boolean database field telling if the student qualifies or not. This may be None (NULL), if the status is
almostready, to mark students as not ready for export.

status
Foreign key to a QualifiesForFinalExamPeriodStatus.

devilry_gradingsystem — The devilry grading system plugin architecture

How we configure the grading system on an assignment

88 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

1 - Select a grading system plugin. User selects one of the plugins in the
devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry.

2 - Configure the grading system plugin User configures the grading system using the view pointed to by
devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface.get_configuration_url().

Note: This step is skipped unless the plugin has set requires_configuration to True

3 - Configure the maximum number of points possible User sets the maximum number of points possible.

Note: Plugins can opt out of this step by setting sets_max_points_automatically to True

4 - Choose how students are graded

The user selects one of the possible values for devilry.apps.core.models.Assignment.points_to_grade_mapper):

• Passed failed

• Raw points

• Custom table

5 - Configure the points to grade mapping table (only if custom-table) If the user selected custom-table,
they need to setup that table.

6 - Configure required points to pass The user selects the number of points required to pass the assignment
(devilry.apps.core.models.Assignment.passing_grade_min_points). How they do this de-
pends on the points_to_grade_mapper:

• If raw-points or passed-failed: Select a number of points between 0 and max_points, including
both ends.

• If custom table: Select a grade from the table.

Note: Plugins can opt out of this step by setting sets_passing_grade_min_points_automatically)

Creating a Plugin

A grading system plugin must implement the devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface,
and it must register the implemented class with devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry.

Please refer to one of the simple grading system plugins, such as devilry_gradingsystemplugin_points,
for a starting point for implementing your own plugin.

API

class devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface(assignment)
Bases: object

Interface for new grading system plugins. Makes the grading system plugin ready for the global registry.

1.3. Devilry developer documentation 89

Devilry Documentation, Release 2.0.20-

This interface must be implemented by each grade plugin in the running system. this holds all the global
information necessary to be able to manage the grade plugin layout and to cover smooth transition between
different grade plugins on different Assignments

id = None
The ID of the registry. Should be a unique string, typically the python path of the module implementing
the plugin. This attribute MUST be overidden by each plugin.

title = None
The title of the plugin. Should be a short title, and it should be translated.

description = None
The description of the plugin. Should be translated. Shown with css white-space:pre-wrap.

requires_configuration = False
True if the plugin require configuration before it can be used. If a plugin sets this to True,
is_configured_correctly() and get_configuration_url() must be overridden.

sets_passing_grade_min_points_automatically = False
True if the plugin sets devilry.apps.core.models.Assignment.passing_grade_min_points
automatically. If this is True, the plugin must implement get_passing_grade_min_points().

sets_max_points_automatically = False
True if the plugin sets devilry.apps.core.models.Assignment.max_points automati-
cally. If this is True, the plugin must implement get_max_points().

get_passing_grade_min_points()
Get the value for devilry.apps.core.models.Assignment.passing_grade_min_points
for this assignment.

MUST be implemented when sets_passing_grade_min_points_automatically is True.

get_max_points()
Get the value for devilry.apps.core.models.Assignment.max_points for this assign-
ment.

MUST be implemented when sets_max_points_automatically is True.

is_configured()
Is the plugins configured in a manner that makes it ready for use on this assignment.

MUST be implemented if requires_configuration is True.

get_configuration_url()
Get the configuration URL for this plugin for this assignment.

MUST be implemented if requires_configuration is True.

get_edit_feedback_url(deliveryid)
Get the feedback editing URL for this plugin for the given deliveryid.

Parameters deliveryid – The ID of the delivery to provide feedback for.

get_bulkedit_feedback_url(assignmentid)
Get the feedback editing URL for this plugin for the given assignmentid.

Parameters assignmentid – The ID of the delivery to provide feedback for.

exception devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginNotInRegistryError
Bases: exceptions.Exception

Raised by GradingSystemPluginRegistry.get()when a plugin that is not in the registry is requested.

exception devilry.devilry_gradingsystem.pluginregistry.NotGradingSystemPluginError
Bases: exceptions.Exception

90 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

Raised by GradingSystemPluginRegistry.add() when adding a plugin that is not a subclass of
GradingSystemPluginInterface.

class devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry
Bases: object

Global Registry for grading system plugins.

This registry holds information on each grading system plugin the current setup uses.

The registry is used to decouple providing points for grades from the rest of the grading framework.

add(registryitemcls)
Add a plugin to the registry.

Parameters registryitemcls – A subclass of GradingSystemPluginInterface.
Raises NotGradingSystemPluginError If registryitemcls is not a subclass of

GradingSystemPluginInterface.

get(id)
Get a grading plugin API class by its ID.

Raises GradingSystemPluginNotInRegistryError If the plugin is not found in the reg-
istry.

iter_with_assignment(assignment)
Returns an iterator over instances of all the plugins in the registry. Each instance is constructed with the
given assignment as their first and only argument.

devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry = <devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry object at 0x7f243663b7d0>
The grading system plugin registry. An instance of GradingSystemPluginRegistry. Plugins register
themselves through this instance.

devilry.devilry_search — Search for Devilry

This app provides a search API for Devilry.

How we handle object level permissions

We maintain a list of admin_ids on Node, Subject, Period, Assignment and AssignmentGroup. On Assignment-
Group, we also maintain a list of examiner_ids and student_ids. When we perform a search, we filter on
these ids (the requesting user must be in an id-list). I.E:

When we search for assignments, we first filter on admin_ids=request.user.id, then we perform
the search.

Protection of anonymous data

We do not include any sensitive data in the main search index:

• No student names on anonymous assignments — Examiners should not be able to search for these because they
are only supposed to know the candidate ID.

• No examiner names on anonymous assignments — Students should not be able to know who their examiner is.

• Tags — Only examiners and admins are supposted to see tags.

This is handled in the devilry.apps.core.search_indexes.AssignmentGroupIndex, and the exclu-
sions is handled by the text-template in the search/indexes/core/assignmentgroup_text.txt template
(located in devilry/apps/core/templates/).

1.3. Devilry developer documentation 91

Devilry Documentation, Release 2.0.20-

We include the excluded data in their own fields in AssignmentGroupIndexes. The fields, examiners, tags
and candidates, may be used to search for the excluded terms.

Limitations

We do not currently use the excluded fields mentioned in the previous section in the search API. This means that it is:

• not possible to search for AssignmentGroups by username or examiner on anonymous assignments.

• not possible to search for AssignmentGroups by tags.

devilry.devilry_theme — The Devilry theme

Warning: The devilry.devilry_theme app is deprecated. Use devilry.devilry_theme2.

ExtJS apps

ExtJS apps should use the extjs4.views.Extjs4AppView from django_extjs4:

from django.utils.translation import ugettext as _
from extjs4.views import Extjs4AppView

class AppView(Extjs4AppView):
template_name = "devilry_examiner/app.django.html"
appname = ’devilry_examiner’
title = _(’Myapp’) # The initial title until you set one in your app

Writing ExtJS apps is out of scope of this guide. The code above will give you a view that you can add to your
urls.py. You have to put your app.js in static/myapp/app.js, and it will just work. Take a look at
devilry_student and devilry_subjectadmin for inspiration.

Normal Django apps

Normal Django apps can extend devilry_theme/nonapptemplate.django.html template. This will give
you access to all of the bootstrap CSS, and the Devilry header at the top of your page. Most parts of the template and
its parent-template can be modified by overriding blocks. See their source code for more details.

Example:

{% extends "devilry_theme/nonapptemplate.django.html" %}
{% load i18n %}
{% load static %}

{% block title %}{% trans "Select assignments that students must pass to qualify for final exams" %} - Devilry{% endblock %}

{% block head-pre %}
<script type="text/javascript" src="{% static "myapp/stuff.js" %}"></script>

{% endblock %}

{% block bodyclass%}devilry_subtlebg{% endblock %}

{% block bootstrap-body %}

92 Chapter 1. Table of contents

https://github.com/espenak/django_extjs4

Devilry Documentation, Release 2.0.20-

<div style="margin-top: 40px;">

</div>
{% endblock %}

Deprecated APIs and frameworks

devilry.apps.core.testhelper — Create core test data

Deprecated since version 1.4: Use corebuilder — Setup devilry core data structures for tests instead.

Example

from devilry.apps.core.testhelper import TestHelper

testhelper = TestHelper()

testhelper.add(nodes=’uni:admin(mortend)’,
subjects=[’cs101:admin(admin1,admin2):ln(Basic OO programming)’,

’cs110:admin(admin3,admin4):ln(Basic scientific programming)’,
’cs111:admin(admin1,damin3):ln(Advanced OO programming)’],

periods=[’fall11’, ’spring11:begins(6)’])

add 4 assignments to inf101 and inf110 in fall and spring
testhelper.add(nodes=’uni’,

subjects=[’cs101’, ’cs110’],
periods=[’fall11’, ’spring11’],
assignments=[’a1’, ’a2’])

add 12 assignments to inf111 fall and spring.
testhelper.add(nodes=’uni’,

subjects=[’cs111’],
periods=[’fall11’, ’spring11’],
assignments=[’week1’, ’week2’, ’week3’, ’week4’])

set up some students with descriptive names

inf101 is so easy, everyone passes
testhelper.add_to_path(’uni;cs101.fall11.a1.g1:candidate(goodStud1):examiner(examiner1).dl:ends(5)’)
testhelper.add_to_path(’uni;cs101.fall11.a1.g2:candidate(goodStud2):examiner(examiner1).dl:ends(5)’)
testhelper.add_to_path(’uni;cs101.fall11.a1.g3:candidate(badStud3):examiner(examiner2).dl:ends(5)’)
testhelper.add_to_path(’uni;cs101.fall11.a1.g4:candidate(okStud4):examiner(examiner2).dl:ends(5)’)

testhelper.add_to_path(’uni;cs101.fall11.a2.g1:candidate(goodStud1):examiner(examiner1).dl:ends(5)’)
testhelper.add_to_path(’uni;cs101.fall11.a2.g2:candidate(goodStud2):examiner(examiner1).dl:ends(5)’)
testhelper.add_to_path(’uni;cs101.fall11.a2.g3:candidate(badStud3):examiner(examiner2).dl:ends(5)’)
testhelper.add_to_path(’uni;cs101.fall11.a2.g4:candidate(okStud4):examiner(examiner2).dl:ends(5)’)

inf110 is an easy group-project, everyone passes
testhelper.add_to_path(’uni;cs110.fall11.a1.g1:candidate(goodStud1,goodStud2):examiner(examiner1).dl:ends(14)’)
testhelper.add_to_path(’uni;cs110.fall11.a1.g2:candidate(badStud3,okStud4):examiner(examiner2).dl.ends(14)’)

testhelper.add_to_path(’uni;cs110.fall11.a2.g1:candidate(goodStud1,goodStud2):examiner(examiner1).dl:ends(14)’)
testhelper.add_to_path(’uni;cs110.fall11.a2.g2:candidate(badStud3,okStud4):examiner(examiner2).dl.ends(14)’)

1.3. Devilry developer documentation 93

Devilry Documentation, Release 2.0.20-

inf111 is hard! Everyone passes week1
testhelper.add_to_path(’uni;cs111.fall11.week1.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week1.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week1.g3:candidate(badStud3):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week1.g4:candidate(okStud4):examiner(examiner3).dl:ends(5)’)

and 2
testhelper.add_to_path(’uni;cs111.fall11.week2.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week2.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week2.g3:candidate(badStud3):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week2.g4:candidate(okStud4):examiner(examiner3).dl:ends(5)’)

badStud4 fails at week3
testhelper.add_to_path(’uni;cs111.fall11.week3.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week3.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week3.g4:candidate(okStud2):examiner(examiner3).dl:ends(5)’)

and okStud4 fails at week4
testhelper.add_to_path(’uni;cs111.fall11.week4.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)’)
testhelper.add_to_path(’uni;cs111.fall11.week4.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)’)

deliveries
goodFile = {’good.py’: [’print ’, ’awesome’]}
okFile = {’ok.py’: [’print ’, ’meh’]}
badFile = {’bad.py’: [’print ’, ’bah’]}

cs101
testhelper.add_delivery(’cs101.fall11.a1.g1’, goodFile)
testhelper.add_delivery(’cs101.fall11.a1.g2’, goodFile)
testhelper.add_delivery(’cs101.fall11.a1.g3’, badFile)
testhelper.add_delivery(’cs101.fall11.a1.g4’, okFile)
testhelper.add_delivery(’cs101.fall11.a2.g1’, goodFile)
testhelper.add_delivery(’cs101.fall11.a2.g2’, goodFile)
testhelper.add_delivery(’cs101.fall11.a2.g3’, badFile)
testhelper.add_delivery(’cs101.fall11.a2.g4’, okFile)

cs110
testhelper.add_delivery(’cs110.fall11.a1.g1’, goodFile)
testhelper.add_delivery(’cs110.fall11.a1.g1’, goodFile)
testhelper.add_delivery(’cs110.fall11.a2.g2’, badFile)
testhelper.add_delivery(’cs110.fall11.a2.g2’, okFile)

cs111
testhelper.add_delivery(’cs111.fall11.week1.g1’, goodFile)
testhelper.add_delivery(’cs111.fall11.week1.g2’, goodFile)
testhelper.add_delivery(’cs111.fall11.week1.g3’, badFile)
testhelper.add_delivery(’cs111.fall11.week1.g4’, okFile)

g3’s delivery fails here
testhelper.add_delivery(’cs111.fall11.week2.g1’, goodFile)
testhelper.add_delivery(’cs111.fall11.week2.g2’, goodFile)
testhelper.add_delivery(’cs111.fall11.week2.g3’, badFile)
testhelper.add_delivery(’cs111.fall11.week2.g4’, okFile)

g4’s delivery fails here
testhelper.add_delivery(’cs111.fall11.week3.g1’, goodFile)
testhelper.add_delivery(’cs111.fall11.week3.g2’, goodFile)
testhelper.add_delivery(’cs111.fall11.week3.g4’, okFile)

94 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

g4 fails
testhelper.add_delivery(’cs111.fall11.week4.g1’, goodFile)
testhelper.add_delivery(’cs111.fall11.week4.g2’, goodFile)

feedbacks
an empty verdict defaults to max score
goodVerdict = None
okVerdict = {’grade’: ’C’, ’points’: 85, ’is_passing_grade’: True}
badVerdict = {’grade’: ’E’, ’points’: 60, ’is_passing_grade’: True}
failVerdict = {’grade’: ’F’, ’points’: 30, ’is_passing_grade’: False}

testhelper.add_feedback(’cs101.fall11.a1.g1’, verdict=goodVerdict)
testhelper.add_feedback(’cs101.fall11.a1.g2’, verdict=goodVerdict)
testhelper.add_feedback(’cs101.fall11.a1.g3’, verdict=badVerdict)
testhelper.add_feedback(’cs101.fall11.a1.g4’, verdict=okVerdict)
testhelper.add_feedback(’cs101.fall11.a2.g1’, verdict=goodVerdict)
testhelper.add_feedback(’cs101.fall11.a2.g2’, verdict=goodVerdict)
testhelper.add_feedback(’cs101.fall11.a2.g3’, verdict=badVerdict)
testhelper.add_feedback(’cs101.fall11.a2.g4’, verdict=okVerdict)

cs110
testhelper.add_feedback(’cs110.fall11.a1.g1’, verdict=goodVerdict)
testhelper.add_feedback(’cs110.fall11.a1.g1’, verdict=badVerdict)
testhelper.add_feedback(’cs110.fall11.a2.g2’, verdict=goodVerdict)
testhelper.add_feedback(’cs110.fall11.a2.g2’, verdict=okVerdict)

cs111
testhelper.add_feedback(’cs111.fall11.week1.g1’, verdict=goodVerdict)
testhelper.add_feedback(’cs111.fall11.week1.g2’, verdict=goodVerdict)
testhelper.add_feedback(’cs111.fall11.week1.g3’, verdict=badVerdict)
testhelper.add_feedback(’cs111.fall11.week1.g4’, verdict=okVerdict)

g3’s feedback fails here
testhelper.add_feedback(’cs111.fall11.week2.g1’, verdict=goodVerdict)
testhelper.add_feedback(’cs111.fall11.week2.g2’, verdict=goodVerdict)
testhelper.add_feedback(’cs111.fall11.week2.g3’, verdict=failVerdict)
testhelper.add_feedback(’cs111.fall11.week2.g4’, verdict=okVerdict)

g4’s feedback fails here
testhelper.add_feedback(’cs111.fall11.week3.g1’, verdict=goodVerdict)
testhelper.add_feedback(’cs111.fall11.week3.g2’, verdict=goodVerdict)
testhelper.add_feedback(’cs111.fall11.week3.g4’, verdict=failVerdict)

g4 fails
testhelper.add_feedback(’cs111.fall11.week4.g1’, verdict=goodVerdict)
testhelper.add_feedback(’cs111.fall11.week4.g2’, verdict=goodVerdict)

TestHelper API

class devilry.apps.core.testhelper.TestHelper
Bases: object

This class helps generate test data.

create_user(name, fullname=None)
Create a user with the given username. Adds the user to self.<name>.

Returns The created user object.

1.3. Devilry developer documentation 95

Devilry Documentation, Release 2.0.20-

reload_from_db(obj)
Reload the given django.db.Model object from the database using
obj.__class__.get(pk=obj.pk). Updates the cache entry on this testhelper object if the
object was created using this testhelper.

Returns The object that was re-loaded from the database.

create_superuser(name)
Create a superuser with the given username. Adds the user to self.<name>.

Returns The created user object.

add_delivery(assignmentgroup, files={}, after_last_deadline=False, delivered_by=None, success-
ful=True, time_of_delivery=None)

Parameters
• assignmentgroup – Expects either an AssignmentGroup object or a string path

to an assignmentgroup. This is a mandatory parameter.
• files – A dictionary with key/values as file name and file content as described in

Delivery.add_file()
• after_last_deadline – If True, sets time_of_delivery 1 day later than

the assignmentgroups active deadline. Effectively the same as setting
time_of_delivery=1. Ignored i time_of_delivery is used.

• time_of_delivery – Set time_of_delivery to this number of days after the active
deadline. Use a negative number to add a delivery before the active deadline.
Can also be a datetime.datetime object that specifies an exact timestamp.

add_feedback(delivery=None, verdict=None, examiner=None, timestamp=None, ren-
dered_view=’This is a default static feedback’)

Parameters
• delivery – Either a Delivery object or a string path to an assignmentgroup, where

we take the last delivery made. This is the only mandatory parameter
• verdict – E dict containing grade, score and passing grade. Defaults to:

dict(grade=’A’, points=100, is_passing_grade=True)

• examiner – A User object. Defaults to the first examiner for the delivery’s as-
signment group.

• timestamp – A datetime object for when the feedback was saved. Defaults to
same time the delivery was made

• rendered_view – The rendered view of the feedback. Defaults to "This is
a default static feedback".

add(nodes=None, subjects=None, periods=None, assignments=None, assignmentgroups=None, dead-
lines=None)
Smart add.

Each attribute is normally just a list of names. The names are short_name, for nodeish types, and a
virtual name for assignmentgroups, and deadlines.

Names can be supplemented by extras, which are parameters that tunes the created items. Extras are
separated by colon (:), and each extra has the following format:

<name>(<args>)

Parameters
• nodes – List of nodes.

admin Comma-separated list of admins (usernames) to add to the node.
ln Long name of the period. Defaults to capitalize short name.

• subjects – List of subjects. Extras:
admin Comma-separated list of admins (usernames) to add to the node.

96 Chapter 1. Table of contents

Devilry Documentation, Release 2.0.20-

ln Long name of the period. Defaults to capitalize short name.
• periods – List of nodes. Extras:

admin Comma-separated list of admins (usernames) to add to the node.
ln Long name of the period. Defaults to capitalize short name.
begins Number of months after now that the period begins. Can be a negative

number. Defaults to now.
ends Number of months after begins that the period ends. Can be a negative

number. Defaults to 6.
• assignments – List of assignments.

admin Comma-separated list of admins (usernames) to add to the node.
ln Long name of the period. Defaults to capitalize short name.
anon Should the assignment be anonymous? true or false, and defaults to

false.
pub Number of days after the start time of the period that the assignment should

be published. Can be a negative number. Defaults to 0.
delivery_types electronic or nonelectronic.
first_deadline The offset of the first_deadline from the

publishing_time in days. If this is 0, we automatically add 1
second to the publishing_time to ensure that they are not equal.

• assignmentgroups – List of assignmentgroups. Extras:
candidate Comma-separated list of candidates (usernames) to add

to the group. Optionally, you can add a candidate_id by suf-
fixing the username with ;<candidate_id>. Example:
candidate(student0;2345,student1;5673)

examiner Comma-separated list of examiners (usernames) to add to the group.
• deadlines – List of deadlines. Extras:

ends Number of days after the publishing_time of the deadline ends. Can be a
negative number. Defaults to 10 days.

text Deadline text.

add_to_path(path)
Splits up a dot separated path, and calls add() with those pieces as arguments.

get_object_from_path(path)
Get a Node, Subject, Period, Assignment, AssignmentGroup, Deadline, Delivery
or Feedback that was added with add(), add_feedback(), add_to_path(), or
add_delivery().

The path does not have to contain the node path (unless you are looking up a node), since subject short-
names are unique.

set_attributes_from_path(path, **attributes)
Shortcut to get_object_from_path(), set the given attributes on the object, and call
obj.save().

create_feedbacks(*args)
Create feedbacks on groups from the given list of (group, feedback, delivery)-tuples.

Parameters args – Each item in the arguments list is a (group, feedback[,
delivery]) tuple where:
group is the devilry.apps.core.models.AssignmentGroup-object that

it to be given feedback
feedbacks is a dict with attributes for the

devilry.apps.core.models.StaticFeedback with the follow-
ing keys:
grade See devilry.apps.core.models.StaticFeedback.grade.
points See devilry.apps.core.models.StaticFeedback.points.

1.3. Devilry developer documentation 97

Devilry Documentation, Release 2.0.20-

is_passing_grade See devilry.apps.core.models.StaticFeedback.is_passing_grade.
delivery Is an optional dict of files to make a delivery from. Defaults to:

{’test.py’: [’print ’, ’tst’]}

A delivery to save the feedback on is created automatically, so all that is needed of the groups is an
examiner, a candidate and a deadline.

Example:

self.create_feedbacks(
(group1, {’grade’: ’B’, ’points’: 86, ’is_passing_grade’: True}),
(group2, {’grade’: ’A’, ’points’: 96, ’is_passing_grade’: True}, {’hello.txt’, [’Hello’]}),
(group3, {’grade’: ’F’, ’points’: 12, ’is_passing_grade’: False})

)

Releases

Release notes

Release Notes 1.2.1

Major changes

Semantic changes Administrators are no longer implicitly examiner. They must make themself examiner if they
want to provide feedback to students. We have made it easy to make yourself examiner:

• An option when creating an assignment.

• Administrators can edit examiners on the period/semester.

• When browsing a group (student), you get a button to make yourself examiner if you are not already.

A complete rewrite of the deployment system We have split our deployment scripts (for system administrators)
into a separate repository. The repository includes a Chef DevOps setup that should simplify the work of system
admins greatly. It also includes a much better setup for those who do not wish to use Chef. See http://devilry-
deploy.readthedocs.org/ for more information.

New subject admin UI A completely new user interface for subject (course) administrators. The UI has more or
less all of the features of the old UI, but it is far more user-friendly and optimized for common task. Some highlights:

Create new assignment wizard Smart and efficient create new assignment wizard. The wizard sets up an assign-
nent, adds students to the assignment and assigns examiners to the students with very little input needed.

The wizard is smart and tries to suggest values when you create assignments. It automatically suggests names of
assignments based on previous assignments. So if you name your first assignment Assignment 1, it will suggest
Assignment 2 for your next assignment.

The wizard also autodetects regularly repeating assignments, and suggests publishing time and submission dates based
on regular intervals. This means that if you have weekly deliveries, you will only have to setup the submission and
publishing times on the first 2 weeks, and Devilry will suggest sane defaults for the rest. It even works if you have a
break of a week or 2, because Devilry uses the most common interval for all your assignments.

98 Chapter 1. Table of contents

http://devilry-deploy.readthedocs.org/
http://devilry-deploy.readthedocs.org/

Devilry Documentation, Release 2.0.20-

For those who like to set up many assignments, the wizard has a shortcut after each assignment is created, that lets you
re-run the wizard using the same settings. Combined with the autodetection described above, this means that you can
setup many assignments in a very efficient manner.

Semester/period overview An overview, very similar to the one in the old UI, but it is faster and has some new
features. Autodetects problems with missing students. Supports export to Office Open XML (MS Excel), CSV, JSON,
XML, YAML and REST API.

Logging of all dangerous actions We log all dangerous actions in the new UI, like deletion, renaming, moving
deadline, and so on. The log-records include the action performed, with IDs and names, the user who made the
change, and the time the change occurred. We also log failed dangerous actions.

New system for marking qualified for final exam Far more user-friendly and plugin based, so it is easy to extend.

Edit examiners and students on semesters/periods Admins can manage their own students and examiners. They
can tag students and examiners, and use those tags to automatch students and examiners on all assignments.

Deadline manager A full featured deadline manager that gives you full control over all your deadlines, and the
students on each deadline. Among many other features, it supports moving deadlines (which several users have
requested).

Interractive guide system A guide that stays at your right hand side and guides you through the UI. We only have
a guide that helps users creating new assignments, but we will add guides when users tell us what they need help
understanding.

Smarter statuses Groups (students) are no longer closed or open. Instead they have smarter statuses, like: Waiting
for feedback, Waiting for deliveries, Corrected, and so on.

Statistics about examiners on an assignment Charts and numbers that should help admins keep track of their
examiners. Please let us know if you have suggestions for more numbers or charts in this view, or if you have ideas
for making it better.

New node admin UI Because the old admin interface was for both node and subject administrator, we had to make
a new UI for node administrators when we replaced it. This UI is not very powerful in this release, but we plan to
improve it gradually in cooperation with its users.

Release Notes 1.2.1.1

Major changes

New qualified for final exam app The qualified for final exam app has been rewritten. It now uses a very user-
friendly wizard to guide users through the process, and the entire system in plugin-based, so is is relatively easy to add
support for more complex scenarios than the build-in plugins support. In addition to a plugin based architecture, the
new app adds some useful new features:

• Support for almost finished. This solves the problem that arises when just a couple of the students need more
time, but you want to export the rest of the students as ready for exams.

1.3. Devilry developer documentation 99

Devilry Documentation, Release 2.0.20-

Here is how it works for a subject/course administrator:

– The entire period/semester is marked as almost ready for export.

– The administrator gets a message field where they can explain the situation.

– The administrator has to select the students that is not ready for export.

And for a Node/Department administrator:

– Gets a list of un-exported periods/semesters, kind of like the TODO-list for examiners.

– Can mark periods/semesters as exported.

– If the qualified-for-final-exam status on a period/semester is changed, it re-appears in the TODO-list
with information about why it has re-appeared.

For systems that want to auto-export from Devilry:

– Can get the same information as admins get via their UI via the REST API, and make smart choices
based on metadata they store about the last time they exported. Devilry saves a new status each
time an admin makes a change, so it should not be a problem to track changes.

Release Notes 1.3

See also:

Migration guide for sysadmins

Major changes

REST APIs We are working on migrating from djangorestframework version 1 to
django-simple-rest. The reason for this is that djangorestframework version 2 is incompatible
with version one, but they use the same namespace, which makes it hard to run them side by side. We could hack
it to work, but django-simple-rest matches our needs better, and it is more in line with the modern Django
view API. We have created the devilry_rest module where we keep our common REST utilities, and we have
implemented public/private authentication that will make it a lot easier to program against Devilry.

Fixed HARD deadlines issues We have moved all constraint checking for HARD deadlines from the core into the
only view where it makes sense to check for hard deadlines. This view is, of course, the one where users add deliveries.

This fixes a lot of edge case issues, such as examiners adding a placeholder delivery when the deadline has expired.

More details: https://github.com/devilry/devilry-django/issues/434

Tell students when they are not relatedstudent on a semester/period We add a big red message for students when
they are not student on a period. This can happen when students are added to a group, and later removed from the
subject/course.

More details and screenshots: https://github.com/devilry/devilry-django/issues/433

MathJaX embedded We have included MathJaX as part of the Devilry repo.

100 Chapter 1. Table of contents

https://devilry-deploy.readthedocs.org/en/2.0.20-/migrationguides/1.3.html
https://github.com/devilry/devilry-django/issues/434
https://github.com/devilry/devilry-django/issues/433

Devilry Documentation, Release 2.0.20-

Release Notes 1.3.1

Changes This is a minor bugfix release. It fixes:

• https://github.com/devilry/devilry-django/issues/437

• https://github.com/devilry/devilry-django/issues/444

• https://github.com/devilry/devilry-django/issues/447

Release Notes 1.3.2

Warning: Does not work - see https://github.com/devilry/devilry-django/issues/463. Use 1.3.3 instead.

Release Notes 1.3.3

Features added

• Added possibilities to remove from current selection in the student overview for assignment administrator in
addition to existing functionality for replacing and adding student to current selection. This makes it easier to
remove student with special tags for example those who have alreade passed the assignment.

• Added an aggregated student info view for Administrators. This will help the managers to be able to easily look
up and check for possible wrongly data. Devilry integrates with third-party solutions for the raw student data
and flaws and erros in the data are not always automatically ruled out.

Release Notes 1.3.4

Fixes https://github.com/devilry/devilry-django/issues/464.

Release Notes 1.3.6

Fixes https://github.com/devilry/devilry-django/issues/481.

Release Notes 1.4.0

New Examiner Interface The biggest new feature in Devilry 1.4.0 is the completely overhauled and new Examiner
interface. Fully responsive and mobile friendly design will make the task of correcting a lot easier.

New Grading System Plugin Architecture Along with the new examiner interface we have added a new plugin
architecture for handling grade mapping. The plugins are easily integrated into Devilry with a minimal required setup
for external plugins. Grade system provided are:

• Approved / Not Approved

• Points

1.3. Devilry developer documentation 101

https://github.com/devilry/devilry-django/issues/437
https://github.com/devilry/devilry-django/issues/444
https://github.com/devilry/devilry-django/issues/447
https://github.com/devilry/devilry-django/issues/463
https://github.com/devilry/devilry-django/issues/464
https://github.com/devilry/devilry-django/issues/481

Devilry Documentation, Release 2.0.20-

Release Notes 1.4.10

Bugfixes:

• https://github.com/devilry/devilry-django/issues/587

Improvements/Changes

• Added programming code similarity check support.

• Made examiner overview sortable.

• Added support for more efficient approval/disapproval of one and one group for examiners.

Release Notes 1.4.11

Bugfixes:

• https://github.com/devilry/devilry-django/issues/604

• https://github.com/devilry/devilry-django/issues/605

Release Notes 1.4.12

Nothing new - just a release to fix a bug in the devilry-deploy release with the same version number.

Release Notes 1.4.13

• Fixed https://github.com/devilry/devilry-django/issues/625

• Updated Detektor to 1.1.0-beta.011 (to get the fix for https://github.com/appressoas/detektor/issues/1)

Release Notes 1.4.14

• Fixes issues with 1.4.13.

Release Notes 1.4.2

Bugfix and finetuning after 1.4.0. Fixes:

• Lots of missing translations.

• Bugs with feedback editing in bulk.

• Fixed https://github.com/devilry/devilry-django/issues/520

• Fixed https://github.com/devilry/devilry-django/issues/519

• Add documentation links right in the UI for examiners.

• More useful metadata in listings for examiners. On the frontpage, we show the number of students waiting
for feedback. On the assignment overview we have added counter for each menu item and a few other small
adjustments.

102 Chapter 1. Table of contents

https://github.com/devilry/devilry-django/issues/587
https://github.com/devilry/devilry-django/issues/604
https://github.com/devilry/devilry-django/issues/605
https://github.com/devilry/devilry-django/issues/625
https://github.com/appressoas/detektor/issues/1
https://github.com/devilry/devilry-django/issues/520
https://github.com/devilry/devilry-django/issues/519

Devilry Documentation, Release 2.0.20-

Release Notes 1.4.3

Bugfixes for 1.4.x. Fixes:

• Fixed https://github.com/devilry/devilry-django/issues/521

• Usable workaround for https://github.com/devilry/devilry-django/issues/520

Release Notes 1.4.4

Bugfixes:

• https://github.com/devilry/devilry-django/issues/528

• https://github.com/devilry/devilry-django/issues/524

Release Notes 1.4.4.1

Bugfixes:

• https://github.com/devilry/devilry-django/issues/531

Release Notes 1.4.4.2

Bugfix Fixed issue #533 https://github.com/devilry/devilry-django/issues/533

Release Notes 1.4.5

Added functionality for students to manage their own group composition.

Bugfixes

Release Notes 1.4.6

Bugfixes and improvements: - Cleanup lots of old examiner UI code. - https://github.com/devilry/devilry-
django/issues/536 - https://github.com/devilry/devilry-django/issues/538 - https://github.com/devilry/devilry-
django/issues/539 - https://github.com/devilry/devilry-django/issues/549 - https://github.com/devilry/devilry-
django/issues/547

Release Notes 1.4.7

Bugfixes:

• https://github.com/devilry/devilry-django/issues/560

• https://github.com/devilry/devilry-django/issues/563

1.3. Devilry developer documentation 103

https://github.com/devilry/devilry-django/issues/521
https://github.com/devilry/devilry-django/issues/520
https://github.com/devilry/devilry-django/issues/528
https://github.com/devilry/devilry-django/issues/524
https://github.com/devilry/devilry-django/issues/531
https://github.com/devilry/devilry-django/issues/533
https://github.com/devilry/devilry-django/issues/536
https://github.com/devilry/devilry-django/issues/536
https://github.com/devilry/devilry-django/issues/538
https://github.com/devilry/devilry-django/issues/539
https://github.com/devilry/devilry-django/issues/539
https://github.com/devilry/devilry-django/issues/549
https://github.com/devilry/devilry-django/issues/547
https://github.com/devilry/devilry-django/issues/547
https://github.com/devilry/devilry-django/issues/560
https://github.com/devilry/devilry-django/issues/563

Devilry Documentation, Release 2.0.20-

Release Notes 1.4.8

Bugfixes:

• https://github.com/devilry/devilry-django/issues/569

• https://github.com/devilry/devilry-django/issues/566

Improvements/Changes

• Making passed as the default choice in Passed/Failed plugin: https://github.com/devilry/devilry-
django/issues/523

• Consistent use of “Write Feedback” to avoid confusion when mixed with “Provide Feedback”

• Made the todolist for examiner show the next forward in the list not the previous one

• Fixed timing issues with rendering on safari and chrome when there was no assignments

Release Notes 2.0.3

Note: We skipped 2.0.2 because of a forgotten update to version.json.

• Fix for https://github.com/devilry/devilry-django/issues/746.

• Fix for serialization issues with Qualifies For Exam.

Release Notes 2.0.4

• Fix for https://github.com/devilry/devilry-django/issues/892

Release Notes 2.0.5

• 2.0.x version with json dump scripts for migration to 3.0

Release Notes 2.0.6

• 2.0.x version with json dump scripts for migration to 3.0

Release Notes 2.0.7

• 2.0.x version with json dump scripts for migration to 3.0

Release Notes 2.0.8

• 2.0.x version with json dump scripts for migration to 3.0

• Removed devilry_search app

104 Chapter 1. Table of contents

https://github.com/devilry/devilry-django/issues/569
https://github.com/devilry/devilry-django/issues/566
https://github.com/devilry/devilry-django/issues/523
https://github.com/devilry/devilry-django/issues/523
https://github.com/devilry/devilry-django/issues/746
https://github.com/devilry/devilry-django/issues/892

Devilry Documentation, Release 2.0.20-

Release Notes 2.0.9

• 2.0.x version with json dump scripts for migration to 3.0

• Removed HAYSTACK_CONNECTIONS

How to release a new Devilry version

In the devilry-django repo

1. Make sure you build and commit any changed ExtJS apps (see JavaScript — Libraries and guidelines/code
style). Make sure to test out student, examiner, course admin and department admin roles with the
EXTJS4_DEBUG=False setting as explained in JavaScript — Libraries and guidelines/code style.

2. Update the version number in:

devilry/version.json

3. Add a releasenotes document in docs/releasenotes-X.Y.Z.rst, and commit the new file.

4. Commit the version changes.

5. Tag the release:

$ git tag vX.Y.Z

6. Push the changes:

$ git push
$ git push --tags

7. Push the changes to pypi:

$ python setup.py sdist upload

1.3. Devilry developer documentation 105

Devilry Documentation, Release 2.0.20-

106 Chapter 1. Table of contents

CHAPTER 2

More help

If this documentation is lacking, or if you have problems, detect bugs, etc...

Forum, issue-tracker and contact information

Note: Devilry is truly open, not just Open Source, but we also try to keep all issues, suggestions and plans in the
open. This means that your suggestions, bugs, problems, etc. is handled in the open, and readable by anyone.

Warning: DO NOT post sensitive information, like names of students, passwords, etc. via any of the contact
channels listed below (see the note above for why).

Issue tracker

Visit The Devilry issue tracker.

Anyone can add issues to our issue tracker at our GitHub project page. We use the issue tracker for bugs, problems,
suggested improvements, suggested new features, etc.

You need to create a GitHub user to add an issue. You just have to write an understandable title and description.
We will then tag your issue, and respond to your via comments on your issue. You should be notified for each new
comments on your issues by email unless you disable email notifications on GitHub.

Facebook

Visit our Facebook page.

Question and Answers forum

Visit: The Devilry Help Questions and Answers forum.

We have a Question and Answer forum on Google Groups named Devilry Help. You can post anything on this forum,
including:

• help understanding Devilry — no problem is too small for this forum

• suggest improvements — even minor improvements

107

https://github.com/devilry/devilry-django/issues
https://www.facebook.com/DevilryProsjektet
https://groups.google.com/forum/#!forum/devilry-help

Devilry Documentation, Release 2.0.20-

• report problems

• report bugs

• suggest new features

Note: We recommend that you use the issue tracker instead of this forum if you have a well defined problem or
suggestion. Even very small improvements or issues belong in the issue tracker, and they end up there even if you post
them in the Q&A forum. The only difference is that someone else have to put them in the issue tracker, which may
delay fixing the issue.

Your local Devilry support

The local Devilry support typically adds a link to a page with their contact information in the help page. Click the
question mark in the upper right corner when logged in to Devilry, and look for a link to internal/organization specific
devilry documentation.

Contact email — only for special cases

Warning: This is only for contact requests that does not belong in the open contact channels, like the issue
tracker, or in the Q&A forums. This mailinglist is typically for those that need private and direct contact with the
Developers, and requests belonging in the other contact channels is ignored.
The warning above about sensitive information is also for this list.

devilry-contact@googlegroups.com

108 Chapter 2. More help

mailto:devilry-contact@googlegroups.com

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

109

Devilry Documentation, Release 2.0.20-

110 Chapter 3. Indices and tables

Python Module Index

d
devilry.apps.core.deliverystore, 69
devilry.apps.core.models.model_utils,

47
devilry.devilry_gradingsystem.pluginregistry,

89
devilry.project.develop.testhelpers.corebuilder,

39
devilry.utils, 71
devilry.utils.groups_groupedby_relatedstudent_and_assignment,

73
devilry_qualifiesforexam, 82

111

Devilry Documentation, Release 2.0.20-

112 Python Module Index

Index

Symbols
__init__() (devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder

method), 43
__init__() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder

method), 43
__init__() (devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder

method), 44
__init__() (devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder

method), 45
__init__() (devilry.project.develop.testhelpers.corebuilder.FileMetaBuilder

method), 46
__init__() (devilry.project.develop.testhelpers.corebuilder.NodeBuilder

method), 41
__init__() (devilry.project.develop.testhelpers.corebuilder.PeriodBuilder

method), 42
__init__() (devilry.project.develop.testhelpers.corebuilder.StaticFeedbackBuilder

method), 47
__init__() (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder

method), 41
__init__() (devilry.project.develop.testhelpers.corebuilder.UserBuilder

method), 41

A
AbstractIsAdmin (class in devilry.apps.core.models), 48
AbstractIsExaminer (class in devilry.apps.core.models),

48
active_where_is_candidate() (dev-

ilry.apps.core.models.AssignmentGroup
class method), 56

active_where_is_examiner() (dev-
ilry.apps.core.models.AbstractIsExaminer
class method), 49

add() (devilry.apps.core.testhelper.TestHelper method),
96

add() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry
method), 91

add_6month_active_period() (dev-
ilry.project.develop.testhelpers.corebuilder.SubjectBuilder
method), 42

add_6month_lastyear_period() (dev-

ilry.project.develop.testhelpers.corebuilder.SubjectBuilder
method), 42

add_6month_nextyear_period() (dev-
ilry.project.develop.testhelpers.corebuilder.SubjectBuilder
method), 42

add_assignment() (dev-
ilry.project.develop.testhelpers.corebuilder.PeriodBuilder
method), 42

add_deadline() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder
method), 44

add_deadline_in_x_weeks() (dev-
ilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder
method), 44

add_deadline_x_weeks_ago() (dev-
ilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder
method), 44

add_delivery() (devilry.apps.core.testhelper.TestHelper
method), 96

add_delivery() (devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder
method), 44

add_delivery_after_deadline() (dev-
ilry.project.develop.testhelpers.corebuilder.DeadlineBuilder
method), 44

add_delivery_before_deadline() (dev-
ilry.project.develop.testhelpers.corebuilder.DeadlineBuilder
method), 44

add_delivery_x_hours_after_deadline() (dev-
ilry.project.develop.testhelpers.corebuilder.DeadlineBuilder
method), 45

add_delivery_x_hours_before_deadline() (dev-
ilry.project.develop.testhelpers.corebuilder.DeadlineBuilder
method), 45

add_examiners() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder
method), 43

add_failed_feedback() (dev-
ilry.project.develop.testhelpers.corebuilder.DeliveryBuilder
method), 46

add_feedback() (devilry.apps.core.testhelper.TestHelper
method), 96

add_feedback() (devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder
method), 45

113

Devilry Documentation, Release 2.0.20-

add_file() (devilry.apps.core.models.Delivery method),
62

add_filemeta() (devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder
method), 45

add_group() (devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder
method), 43

add_group() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo
method), 74

add_node() (devilry.project.develop.testhelpers.corebuilder.NodeBuilder
method), 41

add_passed_feedback() (dev-
ilry.project.develop.testhelpers.corebuilder.DeliveryBuilder
method), 46

add_period() (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder
method), 42

add_students() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder
method), 43, 44

add_subject() (devilry.project.develop.testhelpers.corebuilder.NodeBuilder
method), 41

add_to_path() (devilry.apps.core.testhelper.TestHelper
method), 97

added_by (devilry.apps.core.models.model_utils.Deadline
attribute), 59

admins (devilry.apps.core.models.model_utils.Assignment
attribute), 52

admins (devilry.apps.core.models.model_utils.Node at-
tribute), 49

admins (devilry.apps.core.models.model_utils.Period at-
tribute), 50

admins (devilry.apps.core.models.model_utils.Subject at-
tribute), 50

after_deadline (devilry.apps.core.models.Delivery at-
tribute), 62

after_deadline (devilry.apps.core.models.model_utils.Delivery
attribute), 62

AggreatedRelatedStudentInfo (class in dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment),
73

anonymous (devilry.apps.core.models.model_utils.Assignment
attribute), 52

ArchiveException (class in dev-
ilry.utils.delivery_collection), 71

Assignment (class in devilry.apps.core.models), 52
assignment (devilry.apps.core.models.AssignmentGroup

attribute), 57
assignment (devilry.apps.core.models.Delivery attribute),

62
assignment (devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder

attribute), 43
assignment_group (devilry.apps.core.models.Delivery at-

tribute), 62
assignment_group (dev-

ilry.apps.core.models.model_utils.AssignmentGroupTag
attribute), 59

assignment_group (dev-
ilry.apps.core.models.model_utils.Candidate
attribute), 55

assignment_group (dev-
ilry.apps.core.models.model_utils.Deadline
attribute), 59

assignment_group (dev-
ilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder
attribute), 43

AssignmentBuilder (class in dev-
ilry.project.develop.testhelpers.corebuilder),
43

AssignmentGroup (class in devilry.apps.core.models), 55
assignmentgroup (devilry.apps.core.models.model_utils.Examiner

attribute), 55
AssignmentGroupBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
43

assignmentgroups (dev-
ilry.apps.core.models.model_utils.Assignment
attribute), 52

AssignmentGroupTag (class in devilry.apps.core.models),
59

assignments (devilry.apps.core.models.model_utils.Period
attribute), 50

assignments (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo
attribute), 74

B
BaseNode (class in devilry.apps.core.models), 47

C
can_add_deliveries() (dev-

ilry.apps.core.models.AssignmentGroup
method), 58

can_delete() (devilry.apps.core.models.AssignmentGroup
method), 57

can_delete() (devilry.apps.core.models.Deadline
method), 60

can_save() (devilry.apps.core.models.AssignmentGroup
method), 58

Candidate (class in devilry.apps.core.models), 55
candidate_id (devilry.apps.core.models.model_utils.Candidate

attribute), 55
candidate_id (devilry.apps.core.models.model_utils.RelatedStudent

attribute), 52
candidates (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 55
child_nodes (devilry.apps.core.models.model_utils.Node

attribute), 49
clean() (devilry.apps.core.models.Assignment method),

54
clean() (devilry.apps.core.models.Deadline method), 60
clean() (devilry.apps.core.models.Delivery method), 62

114 Index

Devilry Documentation, Release 2.0.20-

clean() (devilry.apps.core.models.Node method), 49
clean() (devilry.apps.core.models.Period method), 51
copies (devilry.apps.core.models.model_utils.Delivery at-

tribute), 62
copy() (devilry.apps.core.deliverystore.DeliveryStoreInterface

method), 70
copy() (devilry.apps.core.models.Deadline method), 60
copy() (devilry.apps.core.models.Delivery method), 62
copy() (devilry.apps.core.models.FileMeta method), 65
copy() (devilry.apps.core.models.StaticFeedback

method), 64
copy_all_except_candidates() (dev-

ilry.apps.core.models.AssignmentGroup
method), 58

copy_of (devilry.apps.core.models.model_utils.Delivery
attribute), 62

create_archive_from_assignmentgroups() (in module
devilry.utils.delivery_collection), 71

create_archive_from_delivery() (in module dev-
ilry.utils.delivery_collection), 71

create_feedbacks() (dev-
ilry.apps.core.testhelper.TestHelper method),
97

create_relatedstudent() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin
method), 86

create_sessionkey() (in module dev-
ilry_qualifiesforexam.pluginhelpers), 87

create_superuser() (dev-
ilry.apps.core.testhelper.TestHelper method),
96

create_user() (devilry.apps.core.testhelper.TestHelper
method), 95

createtime (devilry_qualifiesforexam.models.Status at-
tribute), 88

D
Deadline (class in devilry.apps.core.models), 59
deadline (devilry.apps.core.models.model_utils.Deadline

attribute), 59
deadline (devilry.apps.core.models.model_utils.Delivery

attribute), 61
deadline (devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder

attribute), 44
deadline_handling (dev-

ilry.apps.core.models.model_utils.Assignment
attribute), 53

DeadlineBuilder (class in dev-
ilry.project.develop.testhelpers.corebuilder),
44

deadlines (devilry.apps.core.models.model_utils.AssignmentGroup
attribute), 55

DeadlineTag (class in devilry_qualifiesforexam.models),
87

deadlinetag (devilry_qualifiesforexam.models.PeriodTag
attribute), 88

delivered_by (devilry.apps.core.models.model_utils.Delivery
attribute), 62

deliveries (devilry.apps.core.models.model_utils.Deadline
attribute), 59

deliveries_available_before_deadline (dev-
ilry.apps.core.models.model_utils.Deadline
attribute), 59

Delivery (class in devilry.apps.core.models), 61
delivery (devilry.apps.core.models.model_utils.FileMeta

attribute), 65
delivery (devilry.apps.core.models.model_utils.StaticFeedback

attribute), 63
delivery (devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder

attribute), 45
delivery_status (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 56
delivery_types (devilry.apps.core.models.model_utils.Assignment

attribute), 52
DeliveryBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
45

deliverystore (devilry.apps.core.models.model_utils.FileMeta
attribute), 65

DeliveryStoreInterface (class in dev-
ilry.apps.core.deliverystore), 69

DeliveryStoreTestMixin (class in dev-
ilry.apps.core.testhelpers), 68

description (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
attribute), 90

devilry.apps.core.deliverystore (module), 69
devilry.apps.core.models.model_utils (module), 47
devilry.devilry_gradingsystem.pluginregistry (module),

89
devilry.project.develop.testhelpers.corebuilder (module),

39
devilry.utils (module), 71
devilry.utils.GroupNode (built-in class), 72
devilry.utils.groups_groupedby_relatedstudent_and_assignment

(module), 73
devilry.utils.OrderedDict (built-in class), 71
devilry_qualifiesforexam (module), 82
DevilryUserProfile (class in devilry.apps.core.models), 65

E
end_time (devilry.apps.core.models.model_utils.Period

attribute), 50
etag (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 56
etag (devilry.apps.core.models.model_utils.Delivery at-

tribute), 62
etag (devilry.apps.core.models.model_utils.Node at-

tribute), 49

Index 115

Devilry Documentation, Release 2.0.20-

etag (devilry.apps.core.models.model_utils.Period at-
tribute), 51

etag (devilry.apps.core.models.model_utils.Subject at-
tribute), 50

Examiner (class in devilry.apps.core.models), 55
examiners (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 55
examiners_publish_feedbacks_directly (dev-

ilry.apps.core.models.model_utils.Assignment
attribute), 52

exists() (devilry.apps.core.deliverystore.DeliveryStoreInterface
method), 70

exported_timestamp (dev-
ilry_qualifiesforexam.models.Status attribute),
88

F
feedback (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 56
feedback (devilry.project.develop.testhelpers.corebuilder.StaticFeedbackBuilder

attribute), 47
feedbacks (devilry.apps.core.models.model_utils.Delivery

attribute), 62
feedbacks_published (dev-

ilry.apps.core.models.model_utils.Deadline
attribute), 59

FileMeta (class in devilry.apps.core.models), 65
filemeta (devilry.project.develop.testhelpers.corebuilder.FileMetaBuilder

attribute), 46
FileMetaBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
46

filemetas (devilry.apps.core.models.model_utils.Delivery
attribute), 62

filename (devilry.apps.core.models.model_utils.FileMeta
attribute), 65

FileNotFoundError, 69
first_deadline (devilry.apps.core.models.model_utils.Assignment

attribute), 53
from_points() (devilry.apps.core.models.StaticFeedback

class method), 64
FsDeliveryStore (class in devilry.apps.core.deliverystore),

70
FsHierDeliveryStore (class in dev-

ilry.apps.core.deliverystore), 70
full_name (devilry.apps.core.models.model_utils.DevilryUserProfile

attribute), 65

G
get() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry

method), 91
get_active_deadline() (dev-

ilry.apps.core.models.AssignmentGroup
method), 57

get_all_data_as_string() (dev-
ilry.apps.core.models.FileMeta method),
65

get_assignment_queryset() (dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 74

get_best_gradestring() (dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupList
method), 73

get_bulkedit_feedback_url() (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
method), 90

get_configuration_url() (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
method), 90

get_displayname() (dev-
ilry.apps.core.models.DevilryUserProfile
method), 66

get_edit_feedback_url() (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
method), 90

get_examiners() (devilry.apps.core.models.AssignmentGroup
method), 57

get_feedback_with_most_points() (dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupList
method), 73

get_gradingsystem_plugin_api() (dev-
ilry.apps.core.models.Assignment method),
54

get_groups_queryset() (dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 74

get_max_points() (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
method), 90

get_object_from_path() (dev-
ilry.apps.core.testhelper.TestHelper method),
97

get_passing_grade_min_points() (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
method), 90

get_path() (devilry.apps.core.models.Subject method), 50
get_path_from_deliveryid() (dev-

ilry.apps.core.deliverystore.FsHierDeliveryStore
method), 70

get_plugin_input_and_authenticate() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin
method), 85

get_point_to_grade_map() (dev-
ilry.apps.core.models.Assignment method),
54

get_preview_url() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin
method), 85

116 Index

Devilry Documentation, Release 2.0.20-

get_relatedstudents_queryset() (dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 74

get_selectplugin_url() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin
method), 85

get_status() (devilry.apps.core.models.AssignmentGroup
method), 58

get_storageobj() (devilry.apps.core.testhelpers.DeliveryStoreTestMixin
method), 68

get_students() (devilry.apps.core.models.AssignmentGroup
method), 57

grade (devilry.apps.core.models.model_utils.StaticFeedback
attribute), 63

grading_system_plugin_id (dev-
ilry.apps.core.models.model_utils.Assignment
attribute), 53

GradingSystemPluginInterface (class in dev-
ilry.devilry_gradingsystem.pluginregistry),
89

GradingSystemPluginNotInRegistryError, 90
GradingSystemPluginRegistry (class in dev-

ilry.devilry_gradingsystem.pluginregistry),
91

gradingsystempluginregistry (in module dev-
ilry.devilry_gradingsystem.pluginregistry),
91

group_assignmentgroups() (built-in function), 72
group_assignments() (built-in function), 72
group_nodes() (built-in function), 72
GroupDeliveriesByDeadline (class in dev-

ilry.utils.assignmentgroup), 71
GroupList (class in dev-

ilry.utils.groups_groupedby_relatedstudent_and_assignment),
73

GroupsGroupedByRelatedStudentAndAssignment
(class in dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment),
74

H
has_text() (devilry.apps.core.models.Deadline method),

61
has_valid_grading_setup() (dev-

ilry.apps.core.models.Assignment method),
54

I
id (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface

attribute), 90
is_active() (devilry.apps.core.models.Assignment

method), 55
is_active() (devilry.apps.core.models.Period method), 51

is_configured() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
method), 90

is_electronic() (devilry.apps.core.models.Assignment
method), 53

is_electronic() (devilry.apps.core.models.Delivery
method), 63

is_empty() (devilry.apps.core.models.Assignment
method), 54

is_empty() (devilry.apps.core.models.AssignmentGroup
method), 57

is_empty() (devilry.apps.core.models.Deadline method),
60

is_empty() (devilry.apps.core.models.Node method), 49
is_empty() (devilry.apps.core.models.Period method), 51
is_empty() (devilry.apps.core.models.Subject method),

50
is_examiner() (devilry.apps.core.models.AssignmentGroup

method), 57
is_in_the_future() (devilry.apps.core.models.Deadline

method), 60
is_in_the_past() (devilry.apps.core.models.Deadline

method), 61
is_last_delivery (devilry.apps.core.models.Delivery at-

tribute), 62
is_nonelectronic() (devilry.apps.core.models.Assignment

method), 54
is_nonelectronic() (devilry.apps.core.models.Delivery

method), 63
is_open (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 55
is_passing_grade (devilry.apps.core.models.model_utils.StaticFeedback

attribute), 63
iter_archive_assignmentgroups() (in module dev-

ilry.utils.delivery_collection), 72
iter_archive_deliveries() (in module dev-

ilry.utils.delivery_collection), 71
iter_assignments() (dev-

ilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 74

iter_childnodes() (devilry.apps.core.models.Node
method), 49

iter_groups_by_assignment() (dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo
method), 74

iter_relatedstudents_with_results() (dev-
ilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 74

iter_students_that_is_candidate_but_not_in_related()
(devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 74

iter_students_with_feedback_that_is_candidate_but_not_in_related()
(devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 74

iter_students_with_no_feedback_that_is_candidate_but_not_in_related()

Index 117

Devilry Documentation, Release 2.0.20-

(devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment
method), 75

iter_with_assignment() (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry
method), 91

L
languagecode (devilry.apps.core.models.model_utils.DevilryUserProfile

attribute), 66
last_deadline (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 56
last_feedback (devilry.apps.core.models.model_utils.Delivery

attribute), 62
long_displayname (dev-

ilry.apps.core.models.AssignmentGroup
attribute), 57

long_name (devilry.apps.core.models.model_utils.BaseNode
attribute), 48

M
max_points (devilry.apps.core.models.model_utils.Assignment

attribute), 53
MemoryDeliveryStore (class in dev-

ilry.apps.core.deliverystore), 71
merge_into() (devilry.apps.core.models.AssignmentGroup

method), 58
merge_many_groups() (dev-

ilry.apps.core.models.AssignmentGroup
class method), 58

message (devilry_qualifiesforexam.models.Status at-
tribute), 88

missing_expected_delivery (dev-
ilry.apps.core.models.AssignmentGroup
attribute), 56

N
name (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 55
Node (class in devilry.apps.core.models), 49
node (devilry.project.develop.testhelpers.corebuilder.NodeBuilder

attribute), 41
NodeBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
41

NoEmailAddressException, 72
NotGradingSystemPluginError, 90
number (devilry.apps.core.models.model_utils.Delivery

attribute), 61

O
old_where_is_candidate() (dev-

ilry.apps.core.models.AssignmentGroup
class method), 56

old_where_is_examiner() (dev-
ilry.apps.core.models.AbstractIsExaminer
class method), 49

P
parentnode (devilry.apps.core.models.model_utils.Assignment

attribute), 52
parentnode (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 55
parentnode (devilry.apps.core.models.model_utils.Node

attribute), 49
parentnode (devilry.apps.core.models.model_utils.Period

attribute), 50
parentnode (devilry.apps.core.models.model_utils.Subject

attribute), 50
passing_grade_min_points (dev-

ilry.apps.core.models.model_utils.Assignment
attribute), 53

passing_relatedstudentids (dev-
ilry_qualifiesforexam.pluginhelpers.PreviewData
attribute), 87

pathsep (in module dev-
ilry.apps.core.models.model_utils), 47

Period (class in devilry.apps.core.models), 50
period (devilry.apps.core.models.AssignmentGroup at-

tribute), 57
period (devilry.apps.core.models.model_utils.RelatedUserBase

attribute), 51
period (devilry.project.develop.testhelpers.corebuilder.PeriodBuilder

attribute), 42
period (devilry_qualifiesforexam.models.PeriodTag at-

tribute), 88
period (devilry_qualifiesforexam.models.Status at-

tribute), 88
period (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin

attribute), 86
period (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin

attribute), 85
PeriodBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
42

periodid (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin
attribute), 85

periods (devilry.apps.core.models.model_utils.Subject at-
tribute), 50

PeriodTag (class in devilry_qualifiesforexam.models), 87
plugin (devilry_qualifiesforexam.models.Status at-

tribute), 88
pluginsessionid (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin

attribute), 85
points (devilry.apps.core.models.model_utils.StaticFeedback

attribute), 63
points_is_passing_grade() (dev-

ilry.apps.core.models.Assignment method),

118 Index

Devilry Documentation, Release 2.0.20-

54
points_to_grade() (devilry.apps.core.models.Assignment

method), 54
points_to_grade_mapper (dev-

ilry.apps.core.models.model_utils.Assignment
attribute), 53

pop_candidate() (devilry.apps.core.models.AssignmentGroup
method), 58

prettyprint() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo
method), 74

PreviewData (class in dev-
ilry_qualifiesforexam.pluginhelpers), 87

published_where_is_candidate() (dev-
ilry.apps.core.models.AssignmentGroup
class method), 56

published_where_is_examiner() (dev-
ilry.apps.core.models.AbstractIsExaminer
class method), 48

publishing_time (devilry.apps.core.models.model_utils.Assignment
attribute), 52

Q
q_is_active() (devilry.apps.core.models.Period class

method), 51
q_is_admin() (devilry.apps.core.models.AbstractIsAdmin

class method), 48
q_is_candidate() (devilry.apps.core.models.AssignmentGroup

class method), 56
q_is_candidate() (devilry.apps.core.models.Delivery class

method), 62
q_is_candidate() (devilry.apps.core.models.StaticFeedback

class method), 63
q_is_examiner() (devilry.apps.core.models.AbstractIsExaminer

class method), 48
q_is_examiner() (devilry.apps.core.models.StaticFeedback

class method), 63
q_published() (devilry.apps.core.models.AbstractIsExaminer

class method), 48
qualifies (devilry_qualifiesforexam.models.QualifiesForFinalExam

attribute), 88
QualifiesForExamPluginTestMixin (class in dev-

ilry_qualifiesforexam.pluginhelpers), 85
QualifiesForExamPluginViewMixin (class in dev-

ilry_qualifiesforexam.pluginhelpers), 84
QualifiesForFinalExam (class in dev-

ilry_qualifiesforexam.models), 88
query_successful_deliveries() (dev-

ilry.apps.core.models.Deadline method),
60

quickadd_ducku_duck1010() (dev-
ilry.project.develop.testhelpers.corebuilder.SubjectBuilder
class method), 42

quickadd_ducku_duck1010_active() (dev-
ilry.project.develop.testhelpers.corebuilder.PeriodBuilder

class method), 43

R
read_open() (devilry.apps.core.deliverystore.DeliveryStoreInterface

method), 69
recalculate_delivery_numbers() (dev-

ilry.apps.core.models.AssignmentGroup
method), 58

redirect_to_preview_url() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin
method), 85

reduce_datetime_precision() (dev-
ilry.apps.core.models.Deadline class method),
60

RelatedExaminer (class in devilry.apps.core.models), 52
relatedexaminer_set (dev-

ilry.apps.core.models.model_utils.Period
attribute), 50

RelatedStudent (class in devilry.apps.core.models), 51
relatedstudent (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo

attribute), 74
relatedstudent (devilry_qualifiesforexam.models.QualifiesForFinalExam

attribute), 88
relatedstudent_set (dev-

ilry.apps.core.models.model_utils.Period
attribute), 51

RelatedUserBase (class in dev-
ilry.apps.core.models.relateduser), 51

reload_from_db() (dev-
ilry.apps.core.testhelper.TestHelper method),
96

reload_from_db() (dev-
ilry.project.develop.testhelpers.corebuilder.ReloadableDbBuilderInterface
method), 40

ReloadableDbBuilderInterface (class in dev-
ilry.project.develop.testhelpers.corebuilder),
40

remove() (devilry.apps.core.deliverystore.DeliveryStoreInterface
method), 70

rendered_view (devilry.apps.core.models.model_utils.StaticFeedback
attribute), 63

requires_configuration (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
attribute), 90

S
save() (devilry.apps.core.models.AssignmentGroup

method), 56
save() (devilry.apps.core.models.Deadline method), 60
save() (devilry.apps.core.models.StaticFeedback

method), 64
save_plugin_output() (dev-

ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin
method), 85

Index 119

Devilry Documentation, Release 2.0.20-

save_settings_in_session() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin
method), 85

save_timestamp (devilry.apps.core.models.model_utils.StaticFeedback
attribute), 63

saved_by (devilry.apps.core.models.model_utils.StaticFeedback
attribute), 63

scale_points_percent (dev-
ilry.apps.core.models.model_utils.Assignment
attribute), 52

send_email() (built-in function), 72
send_email_admins() (built-in function), 72
serialize() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment

method), 75
set_attributes_from_path() (dev-

ilry.apps.core.testhelper.TestHelper method),
97

set_max_points() (devilry.apps.core.models.Assignment
method), 54

sets_max_points_automatically (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
attribute), 90

sets_passing_grade_min_points_automatically (dev-
ilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
attribute), 90

setUp() (devilry.apps.core.testhelpers.DeliveryStoreTestMixin
method), 68

setup_grading() (devilry.apps.core.models.Assignment
method), 54

short_displayname (dev-
ilry.apps.core.models.AssignmentGroup
attribute), 57

short_name (devilry.apps.core.models.model_utils.BaseNode
attribute), 48

short_name (devilry.apps.core.models.model_utils.Subject
attribute), 50

should_ask_if_examiner_want_to_give_another_chance
(devilry.apps.core.models.AssignmentGroup
attribute), 56

size (devilry.apps.core.models.model_utils.FileMeta at-
tribute), 65

splitpath() (in module dev-
ilry.apps.core.models.model_utils), 47

start_time (devilry.apps.core.models.model_utils.Period
attribute), 50

StaticFeedback (class in devilry.apps.core.models), 63
StaticFeedbackBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
47

Status (class in devilry_qualifiesforexam.models), 88
status (devilry_qualifiesforexam.models.QualifiesForFinalExam

attribute), 88
status (devilry_qualifiesforexam.models.Status attribute),

88

student (devilry.apps.core.models.model_utils.Candidate
attribute), 55

students_can_create_groups (dev-
ilry.apps.core.models.model_utils.Assignment
attribute), 53

students_can_create_groups_now (dev-
ilry.apps.core.models.Assignment attribute),
53

students_can_not_create_groups_after (dev-
ilry.apps.core.models.model_utils.Assignment
attribute), 53

Subject (class in devilry.apps.core.models), 50
subject (devilry.apps.core.models.AssignmentGroup at-

tribute), 57
subject (devilry.apps.core.models.Period attribute), 51
subject (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder

attribute), 41
SubjectBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
41

subjects (devilry.apps.core.models.model_utils.Node at-
tribute), 49

successful (devilry.apps.core.models.model_utils.Delivery
attribute), 62

T
tag (devilry.apps.core.models.model_utils.AssignmentGroupTag

attribute), 59
tag (devilry_qualifiesforexam.models.DeadlineTag

attribute), 87
tags (devilry.apps.core.models.model_utils.AssignmentGroup

attribute), 56
tags (devilry.apps.core.models.model_utils.RelatedUserBase

attribute), 51
test_invalid_period (dev-

ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin
attribute), 87

test_perms_as_nobody (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin
attribute), 86

test_perms_as_nodeadmin() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin
method), 86

test_perms_as_periodadmin() (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin
method), 86

test_perms_as_superuser (dev-
ilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin
attribute), 86

TestHelper (class in devilry.apps.core.testhelper), 95
testhelper (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin

attribute), 85
text (devilry.apps.core.models.model_utils.Deadline at-

tribute), 59

120 Index

Devilry Documentation, Release 2.0.20-

time_of_delivery (devilry.apps.core.models.model_utils.Delivery
attribute), 61

timestamp (devilry_qualifiesforexam.models.DeadlineTag
attribute), 87

title (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface
attribute), 90

U
update() (devilry.project.develop.testhelpers.corebuilder.ReloadableDbBuilderInterface

method), 40
update() (devilry.project.develop.testhelpers.corebuilder.UserBuilder

method), 41
update_profile() (devilry.project.develop.testhelpers.corebuilder.UserBuilder

method), 41
user (devilry.apps.core.models.model_utils.Examiner at-

tribute), 55
user (devilry.apps.core.models.model_utils.RelatedUserBase

attribute), 51
user (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo

attribute), 73
user (devilry_qualifiesforexam.models.Status attribute),

88
UserBuilder (class in dev-

ilry.project.develop.testhelpers.corebuilder),
41

V
verify_deliveries_not_exceeding_max_file_size() (in

module devilry.utils.delivery_collection), 72
verify_groups_not_exceeding_max_file_size() (in mod-

ule devilry.utils.delivery_collection), 72

W
where_is_admin() (dev-

ilry.apps.core.models.AbstractIsAdmin class
method), 48

where_is_admin_or_superadmin() (dev-
ilry.apps.core.models.AbstractIsAdmin class
method), 48

where_is_candidate() (dev-
ilry.apps.core.models.AssignmentGroup
class method), 56

where_is_examiner() (dev-
ilry.apps.core.models.AbstractIsExaminer
class method), 48

why_created (devilry.apps.core.models.model_utils.Deadline
attribute), 60

write_open() (devilry.apps.core.deliverystore.DeliveryStoreInterface
method), 69

Index 121

	Table of contents
	Devilry user documentation
	Devilry sysadmin docs
	Devilry developer documentation

	More help
	Forum, issue-tracker and contact information

	Indices and tables
	Python Module Index

